Terroir 1996 banner
IVES 9 IVES Conference Series 9 Estudio de la fertilidad de los suelos para la zonificación vitícola de la D.O. MONTILLA-MORILES

Estudio de la fertilidad de los suelos para la zonificación vitícola de la D.O. MONTILLA-MORILES

Abstract

La D.O. Montilla-Moriles, situada en el sur de la provincia de Córdoba, corresponde a una de las zonas de mayor interés dentro de la vitivinicultura andaluza. Las formaciones de suelos se distribuyen en la D.O. dependiendo en gran medida de la geomorfología de los terrenos (PANEQUE et al., 2000).
Los autores amplían estudios realizados sobre morfología y parámetros de suelos (Paneque et al., 1999 b) a otras parcelas para evaluar su contribución en la caracterización de pagos vitícolas, conjuntamente con factores geomorfológicos, climáticos y agronómicos (PÉREZ CAMACHO et al., 2000).

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

PANEQUE, G., OSTA, P., PANEQUE, P. and ESPINO, C.

Departamento de Cristalografía, Mineralogía y Química Agrícola
Facultad de Química. Universidad de Sevilla
Campus de Reina Mercedes s/n. 41071 Sevilla

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Effects of wine versus de-alcoholised wine on the microbiota-gut-brain axis in a tau-pathology murine model of Alzheimer’s disease

Alzheimer’s Disease (AD) is the most common disorder associated with cognitive impairment and the main cause of dementia globally. Multiple evidence in the last decade suggest that the gut microbiome plays an important role in the pathogenesis and progression of AD via the microbiota-gut-brain axis, a network wherein microbiome and the central nervous system crosstalk via endocrine, immune, neural, and microbial metabolites signalling pathways.

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.

Using open source software in viticultural research

Many high quality Open Source scientific applications have been available for a long time. Some of them have proved to be particularly useful for carrying out the usual activities involved in viticultural research projects, such as statistical analyses (including spatial analyses), GIS work, database management (possibly integrated with statistical and spatial analysis) and even “low-level” often highly time-consuming activities (e.g. repetitive task on text files).

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.