Terroir 1996 banner
IVES 9 IVES Conference Series 9 Vinos de tea en la isla de la Palma

Vinos de tea en la isla de la Palma

Abstract

En el Norte de la Isla de La Palma (Islas Canarias), se cultivan un conjunto de varietales constituidos principalmente por Negramoll, Listán blanco, Prieto, Albillo y Muñeco. La mayor parte de estos cultivares se encuentran aquí en mayor proporción que en cualquier otra zona de Canarias, y situados en cotas altas entre los 800 y los 1500 metros de altitud, dando lugar a un tipo de vino diferente, que además, en muchos casos, es elaborado en contacto con madera de tea, corazón del “Pinus canariensis”. La mezcla de estas variedades y el contacto con los envases de tea les confiere un gusto particular que recuerda a los vinos de resina Griegos. En el presente trabajo se ha llevado a cabo un estudio de la comarca y una primera caracterización química y sensorial de estos vinos. Algunos de estos varietales, poco extendidos en el resto de Canarias, son susceptibles de ser estudiados con mayor amplitud, dada la potencialidad que han presentado al ser elaborados por separado, tanto para vinos blancos como para vinos tintos.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

García-Pérez (1), F. Bethencourt-Piñero (1), A.J. González-Díaz (1), E. Díaz-Díaz (2), J.A. Gozález-Lorente (3) and J. Darias-Martín (4)

(1) Servicio de Extensión Agraria del Excmo. Cabildo Insular de La Palma
(2) Instituto Canario de Investigaciones Agrarias. Sección de Productos Agroalimentarios
(3) Casa Museo de la Vid y el Vino del Excmo. Cabildo Insular de Tenerife
(4) Departamento de Ingeniería Química y Tecnología Farmacéutica. Area de Tecnología de Alimentos. Universidad de La Laguna

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

Early development of potential wine styles for PIWI varieties in grapevine breeding

In a framework in which climate change is increasingly recognized as a critical global challenge, traditional viticulture must be reconsidered in order to provide better solutions for future needs [1].

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Mechanisms involved in the heating of the environment by the aerodynamic action of a wind machine to protect a vineyard against spring frost

One of the main consequences of global warming is the rise of the mean temperature. Thus, the heat summation by the plants begins sooner in the early spring, and by cumulating growing degree-days, phenological development tends to happen earlier. However, spring frost is still a recurrent phenomenon causing serious damages to buds and therefore, threatening the harvests of the winegrowers. The wind machine is a solution to protect fruit crops against spring frost that is increasingly used. It is composed of a 10-m mast with a blowing fan at its peak. By tapping into the strength of the nocturnal thermal inversion, it sweeps the crop by propelling warm air above to the ground. Thus, stratification is momentarily suppressed. Furthermore, the continuous action of the machine, alone or in synergy, or the addition of a heater allow the bud to be bathed in a warmer environment. Also, the punctual action of the tower’s warm gust reaches the bud directly at each rotation period. All these actions allow the bud to continuously warm up, but with different intensities and over a different period. Although there is evidence of the effectiveness of the wind machines, the thermal transfers involved in those mechanisms raise questions about their true nature. Field measurements based on ultrasonic anemometers and fast responding thermocouples complemented by laboratory measurements on a reduced scale model allow to characterize both the airflow produced by the wind machine and the local temperature in its vicinity. Those experiments were realized in the vineyard of Quincy, in the framework of the SICTAG project. In the future paper, we will detail the aeraulic characterization of the wind machine and the thermal effects resulting from it and we will focus on how the wind machine warms up the local atmosphere and enables to reduce the freezing risk.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.