Terroir 1996 banner
IVES 9 IVES Conference Series 9 Vinos de tea en la isla de la Palma

Vinos de tea en la isla de la Palma

Abstract

En el Norte de la Isla de La Palma (Islas Canarias), se cultivan un conjunto de varietales constituidos principalmente por Negramoll, Listán blanco, Prieto, Albillo y Muñeco. La mayor parte de estos cultivares se encuentran aquí en mayor proporción que en cualquier otra zona de Canarias, y situados en cotas altas entre los 800 y los 1500 metros de altitud, dando lugar a un tipo de vino diferente, que además, en muchos casos, es elaborado en contacto con madera de tea, corazón del “Pinus canariensis”. La mezcla de estas variedades y el contacto con los envases de tea les confiere un gusto particular que recuerda a los vinos de resina Griegos. En el presente trabajo se ha llevado a cabo un estudio de la comarca y una primera caracterización química y sensorial de estos vinos. Algunos de estos varietales, poco extendidos en el resto de Canarias, son susceptibles de ser estudiados con mayor amplitud, dada la potencialidad que han presentado al ser elaborados por separado, tanto para vinos blancos como para vinos tintos.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

García-Pérez (1), F. Bethencourt-Piñero (1), A.J. González-Díaz (1), E. Díaz-Díaz (2), J.A. Gozález-Lorente (3) and J. Darias-Martín (4)

(1) Servicio de Extensión Agraria del Excmo. Cabildo Insular de La Palma
(2) Instituto Canario de Investigaciones Agrarias. Sección de Productos Agroalimentarios
(3) Casa Museo de la Vid y el Vino del Excmo. Cabildo Insular de Tenerife
(4) Departamento de Ingeniería Química y Tecnología Farmacéutica. Area de Tecnología de Alimentos. Universidad de La Laguna

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Genome wide association mapping of phenology related traits in Vitis vinifera L

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered.

Evolution of chemical pattern related to Valpolicella aroma ‘terroir’ during bottle aging

Valpolicella is a famous Italian wine-producing region. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years require wines. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Reduced fungicide sprayings: A biodiversity boost?

Pesticides are considered one of the main causes for arthropod decline in agriculture which in turn may affect ecosystem services such as natural pest control and soil fertility.