Terroir 1996 banner
IVES 9 IVES Conference Series 9 Évolutions qualitative et quantitative des flores microbiennes de moûts de pommes à cidre au cours de la fermentation: relations avec le terroir et la composition physico-chimique des fruits

Évolutions qualitative et quantitative des flores microbiennes de moûts de pommes à cidre au cours de la fermentation: relations avec le terroir et la composition physico-chimique des fruits

Abstract

En France, la filière A.O.C. cidricole emploie de plus en plus de levures initialement sélectionnées pour les fermentations des vins. Le risque d’une uniformisation organoleptique ou d’un marquage fort des produits, souvent évoqué en œnologie (Bourguignon, 1992) risque de se produire au détriment de la nécessaire originalité des cidres d’appellation. La connaissance de la microflore indigène associée aux terroirs, en vue de son utilisation exclusive dans les processus fermentaires, est donc un enjeu important (Frezier et Dubourdieu, 1992 ; Legras et al., 1996). Afin d’ étudier la composition des pommes et suivre son incidence, aux points de vue qualitatif et quantitatif, sur la flore microbienne des moûts obtenus à partir de ces fruits, trois vergers représentatifs des principaux terroirs de l’AOC Pays d’Auge (Normandie) ont été sélectionnés.

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000 

Type: Article

Authors

A. Jacquet*, J.M. Laplace**, I. Travers*, Y. Auffray** and J.P. Simon***

* UA INRA 950 de physiologie et Biochimie Végétales. IRBA. Université de Caen, 14032 Caen cedex France
**Laboratoire de Microbiologie de l’Environnement, IRBA, Université de Caen 14032 Caen cedex France
***ARAC, Lycée agricole du Robillard 14170 Lieury France

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Différenciation de parcelles de Chenin du Val de Loire, a l’aide de l’etude des flores fongiques des raisins, en utilisant l’outil DGGE

Depuis le millésime 2002, une étude est menée sur la diversité de la flore fongique de parcelles du cépage chenin, situées essentiellement sur les appellations de Vouvray et Montlouis ; deux appellations séparées par le fleuve nommé la Loire. Les parcelles se situent dans des conditions pédoclimatiques différentes, qui se retrouvent au travers des suivis de maturité et l’état sanitaire.

Fructose implication in the Sotolon formation in fortified wines: preliminary results

Sotolon (3-hydroxy-4,5-dimethyl-2(5H)-furanone) is a naturally occurring odorant compound with a strong caramel/spice-like scent, present in many foodstuffs. Its positive contribution for the aroma of different fortified wines such as Madeira, Port and Sherry is recognized. In contrast, it is also known to be responsible for the off-flavor character of prematurely aged dry white wines. The formation mechanisms of sotolon in wine are still not well elucidated, particularly in Madeira wines, which are submitted to thermal processing during its traditional ageing. The sotolon formation in these wines has been related to sugar degradation mechanisms, particularly from fructose [1].

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.