Terroir 1996 banner
IVES 9 IVES Conference Series 9 Évolutions qualitative et quantitative des flores microbiennes de moûts de pommes à cidre au cours de la fermentation: relations avec le terroir et la composition physico-chimique des fruits

Évolutions qualitative et quantitative des flores microbiennes de moûts de pommes à cidre au cours de la fermentation: relations avec le terroir et la composition physico-chimique des fruits

Abstract

En France, la filière A.O.C. cidricole emploie de plus en plus de levures initialement sélectionnées pour les fermentations des vins. Le risque d’une uniformisation organoleptique ou d’un marquage fort des produits, souvent évoqué en œnologie (Bourguignon, 1992) risque de se produire au détriment de la nécessaire originalité des cidres d’appellation. La connaissance de la microflore indigène associée aux terroirs, en vue de son utilisation exclusive dans les processus fermentaires, est donc un enjeu important (Frezier et Dubourdieu, 1992 ; Legras et al., 1996). Afin d’ étudier la composition des pommes et suivre son incidence, aux points de vue qualitatif et quantitatif, sur la flore microbienne des moûts obtenus à partir de ces fruits, trois vergers représentatifs des principaux terroirs de l’AOC Pays d’Auge (Normandie) ont été sélectionnés.

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000 

Type: Article

Authors

A. Jacquet*, J.M. Laplace**, I. Travers*, Y. Auffray** and J.P. Simon***

* UA INRA 950 de physiologie et Biochimie Végétales. IRBA. Université de Caen, 14032 Caen cedex France
**Laboratoire de Microbiologie de l’Environnement, IRBA, Université de Caen 14032 Caen cedex France
***ARAC, Lycée agricole du Robillard 14170 Lieury France

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Can plant shaking reduce the incidence of Botrytis?

Wine production is expanding in Scandinavia with a focus on organic growing, and Solaris becoming the signature grape of the region.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.