Terroir 1996 banner
IVES 9 IVES Conference Series 9 Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

Abstract

[English version below]

La caratterizzazione della frazione volatile aromatica dei vini attraverso l’analisi quali­quantitativa dei diversi composti, ha portato corne primo risultato la netta differenziazione delle annate in prova.
Dalla relazione tra analisi sensoriale e analisi chimica, è poi risultato che, per il vino Soave, esteri etilici e acetati sono i composti organoletticamente più importanti e responsabili del-l’aroma fruttato floreale. Alcoli e acidi sono apparsi invece meno utili e sicuri nella caratte­rizzazione varietale e ambientale. E’ quindi importante per ogni vino conoscere i composti aromatici tipici e i loro responsabili analitici, sulla base poi della quantificazione di questi ultimi sarà possibile una caratterizzazione ambientale.

The qualitative and quantitative analysis of the volatile aromatic components of wine has produced, as a first result, a net differentiation of the years being tested.
From the correlation between sensory and chemical analysis we have also found , for Soave wine, that acetates and esters are the most important sensory components; they are responsable for the fruit and floral aromas of wine.
However, alcohols and acids have shown to be less useful in varietal and environmental characterization. It is therefore very important to know, for each wine, the typical aromatic compounds and their chemical composition, and based on their quantification it is possible to value the environment.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

D. TOMASl (1), E. TEALDO (2), R. BARCAROLO (2), P. ZANATTA (2), S. BISCARO (1), R. TROIANO (2)

(1) lstituto Sperimentale per la Viticoltura (Conegliano – TV)
(2) lstituto Lattiero Caseario e di Biotecnologie Agroalimentari di Thiene (VI)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality

Impacts of fumaric acid addition at the bottling on Cabernet Sauvignon wine quality. Comparison with tartaric acid addition.

Climate change and reduction of inputs are two major challenges for viticulture and oenology. With increasing temperature, wines become less acid and microbiologically less stable (1).

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.