Terroir 1996 banner
IVES 9 IVES Conference Series 9 Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

Abstract

[English version below]

La caratterizzazione della frazione volatile aromatica dei vini attraverso l’analisi quali­quantitativa dei diversi composti, ha portato corne primo risultato la netta differenziazione delle annate in prova.
Dalla relazione tra analisi sensoriale e analisi chimica, è poi risultato che, per il vino Soave, esteri etilici e acetati sono i composti organoletticamente più importanti e responsabili del-l’aroma fruttato floreale. Alcoli e acidi sono apparsi invece meno utili e sicuri nella caratte­rizzazione varietale e ambientale. E’ quindi importante per ogni vino conoscere i composti aromatici tipici e i loro responsabili analitici, sulla base poi della quantificazione di questi ultimi sarà possibile una caratterizzazione ambientale.

The qualitative and quantitative analysis of the volatile aromatic components of wine has produced, as a first result, a net differentiation of the years being tested.
From the correlation between sensory and chemical analysis we have also found , for Soave wine, that acetates and esters are the most important sensory components; they are responsable for the fruit and floral aromas of wine.
However, alcohols and acids have shown to be less useful in varietal and environmental characterization. It is therefore very important to know, for each wine, the typical aromatic compounds and their chemical composition, and based on their quantification it is possible to value the environment.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

D. TOMASl (1), E. TEALDO (2), R. BARCAROLO (2), P. ZANATTA (2), S. BISCARO (1), R. TROIANO (2)

(1) lstituto Sperimentale per la Viticoltura (Conegliano – TV)
(2) lstituto Lattiero Caseario e di Biotecnologie Agroalimentari di Thiene (VI)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

In winemaking, several antimicrobial peptides (AMPs) produced by different strains of Saccharomyces cerevisiae were found to be responsible for the inhibition of malolactic fermentation (MLF) carried out by some strains of Oenococcus oeni. However, only two AMPs produced by one of the yeast strains studied were totally identified and their mechanism of action was described. In an attempt to identify new AMPs, a 5-10 kDa peptidic fraction produced by an oenological strain of S. cerevisiae and previously shown to strongly inhibit MLF carried out by a strain of O. oeni was further purified.

Oenotannins addition in wine: can be the modulation of redox potential predictable?

The purpose of this research was to study the interaction between oenotannins and wine matrix in order to design a targeted oenotannins addition for modulating the redox status of wine. It is in fact known that oenotannins can regulate the redox potential of musts and wines since they are electroactive substances (1).

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports.
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90.
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions.