Terroir 1996 banner
IVES 9 IVES Conference Series 9 Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

Abstract

[English version below]

La caratterizzazione della frazione volatile aromatica dei vini attraverso l’analisi quali­quantitativa dei diversi composti, ha portato corne primo risultato la netta differenziazione delle annate in prova.
Dalla relazione tra analisi sensoriale e analisi chimica, è poi risultato che, per il vino Soave, esteri etilici e acetati sono i composti organoletticamente più importanti e responsabili del-l’aroma fruttato floreale. Alcoli e acidi sono apparsi invece meno utili e sicuri nella caratte­rizzazione varietale e ambientale. E’ quindi importante per ogni vino conoscere i composti aromatici tipici e i loro responsabili analitici, sulla base poi della quantificazione di questi ultimi sarà possibile una caratterizzazione ambientale.

The qualitative and quantitative analysis of the volatile aromatic components of wine has produced, as a first result, a net differentiation of the years being tested.
From the correlation between sensory and chemical analysis we have also found , for Soave wine, that acetates and esters are the most important sensory components; they are responsable for the fruit and floral aromas of wine.
However, alcohols and acids have shown to be less useful in varietal and environmental characterization. It is therefore very important to know, for each wine, the typical aromatic compounds and their chemical composition, and based on their quantification it is possible to value the environment.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

D. TOMASl (1), E. TEALDO (2), R. BARCAROLO (2), P. ZANATTA (2), S. BISCARO (1), R. TROIANO (2)

(1) lstituto Sperimentale per la Viticoltura (Conegliano – TV)
(2) lstituto Lattiero Caseario e di Biotecnologie Agroalimentari di Thiene (VI)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.

Rară Neagră 2.0: prospecting, improving and safeguarding the biodiversity in an eastern european heritage grape variety

The Rară Neagră 2.0 project aims to restore and safeguard the intra-varietal diversity of the ancient Eastern European grape variety Rară Neagră through polyclonal selection and the establishment of a certified genetic conservatory.

Subsurface irrigation: a means to reduce chemical and water inputs in vineyards

Grape growers around the world are seeking to reduce their reliance on herbicides. However, traditional alternatives to chemical weed control do not always integrate seamlessly into established vineyard operations. Employing nonchemical weed management often requires trellis alterations, purchasing or hiring new equipment, and depending on region, may significantly increase tractor passes required to reach desired level of weed control. Critical thinking and thoughtful strategies are necessary to minimize expenditures and maintain quality during the transition away from herbicides. In this trial, irrigation was installed underground in an effort to minimize water loss due to evaporation, better direct the water to the vines, and reduce weed growth in the difficult to control undervine area.

Application of remote and proximal sensors for precision vineyard management in Valpolicella

The integration of sensor systems in viticulture is significantly improving vineyard management by enabling faster, comprehensive crop data collection across the entire vineyard, supporting more informed viticultural decision-making, and as a result promoting sustainability.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.