Terroir 1996 banner
IVES 9 IVES Conference Series 9 Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

Abstract

Nell’impostazione del Simposio risulta agevole riconoscere la medesima radice culturale délia “dichiarazione di Cork” sullo sviluppo rurale, alla quale hanno aderito varie associ- azioni culturali italiane fra cui anche l’Istituto nazionale di urbanistica.

La dichiarazione di Cork, con la quale nel novembre ’96 si chiuse la Conferenza europea sullo sviluppo rurale, afferma che “la politica per lo sviluppo rurale deve essere concepita in modo multi-disciplinare e deve essere applicata in modo multi-settoriale, con una chiara dimensione territoriale… Deve essere basata su un approccio integrato: adeguamento e sviluppo agricolo, diversificazione economica, gestione delle risorse naturali, miglioramen- to delle funzioni ambientali, promozione di cultura, turismo e svago”. L’approccio integra- to per lo sviluppo rurale deve realizzare i principi di diversificazione, sostenibilità, sus- sidiarietà e semplificazione. Inoltre deve utilizzare il metodo délia programmazione, godere di una migliore informazione, beneficiare di strumenti di finanziamento anche complessi, rafforzare le attività di monitoraggio e valutazione.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

STEFANO STANGHELLINI

lstituto Nazionale di Urbanistica

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.)

Laying footprints on a new path: proper accounting of biogenic fluxes makes viticulture carbon neutral

To limit the acceleration of global warming we need to reduce greenhouse gases emissions (GHG), making our production processes more carbon-efficient and optimizing absorptions.

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.