Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione della D.O.C. Bolgheri (Castagneto C.): aspetti metodologici ed applicativi

La zonazione della D.O.C. Bolgheri (Castagneto C.): aspetti metodologici ed applicativi

Abstract

The results of the first step of the zoning study carried out in Bolghery appellation area (Castagneto Carducci, Tuscany) in the 1993-1995 period have been recently published. Quality factors of Bolgheri appellation and different “terroirs ” were identified. The influence of site of cultivation (i.e. the ambience created and its immediate environment) on crop level, vine vegetative growth, grape composition and wine quality was the result of the combination of mesoclimatic conditions, soil characteristics, soil water and mineral nutrient availability. In this work the overall methodology and each phase of this zoning process are described and discussed. A particular emphasis is given to some parts of the zoning process:
(1) The detection of the existence of soil effects on grape yield and wine quality;
(2) The grapevine nutritional status and its relationships with nutrients availability in different soils;
(3) The use of descriptive analyses, combined with univariate and multivariate statistics, to define the sensory properties of wines obtained in the different presumed terroirs in Bolgheri appellation.
The second step, nowadays in progress, is the presentation of results to winegrowers and winemakers by the aid of maps and concise reports. At the same time results have to be verified and corroborated by further investigations. Even the limitations of the results of the zoning of Castagneto Carducci territory are presented: the large variability in observed vineyards and the lack of a balanced experimental design.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

MAURIZIO BOGONI

Istituto di Coltivazioni Arboree, Université degli Studi di Milano
Via Celoria 2, 20133 Milano
(dal 1997: Ruffino spa, Via Aretina 42, 50065 Pontassieve, Firenze)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.