Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione della D.O.C. Bolgheri (Castagneto C.): aspetti metodologici ed applicativi

La zonazione della D.O.C. Bolgheri (Castagneto C.): aspetti metodologici ed applicativi

Abstract

The results of the first step of the zoning study carried out in Bolghery appellation area (Castagneto Carducci, Tuscany) in the 1993-1995 period have been recently published. Quality factors of Bolgheri appellation and different “terroirs ” were identified. The influence of site of cultivation (i.e. the ambience created and its immediate environment) on crop level, vine vegetative growth, grape composition and wine quality was the result of the combination of mesoclimatic conditions, soil characteristics, soil water and mineral nutrient availability. In this work the overall methodology and each phase of this zoning process are described and discussed. A particular emphasis is given to some parts of the zoning process:
(1) The detection of the existence of soil effects on grape yield and wine quality;
(2) The grapevine nutritional status and its relationships with nutrients availability in different soils;
(3) The use of descriptive analyses, combined with univariate and multivariate statistics, to define the sensory properties of wines obtained in the different presumed terroirs in Bolgheri appellation.
The second step, nowadays in progress, is the presentation of results to winegrowers and winemakers by the aid of maps and concise reports. At the same time results have to be verified and corroborated by further investigations. Even the limitations of the results of the zoning of Castagneto Carducci territory are presented: the large variability in observed vineyards and the lack of a balanced experimental design.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

MAURIZIO BOGONI

Istituto di Coltivazioni Arboree, Université degli Studi di Milano
Via Celoria 2, 20133 Milano
(dal 1997: Ruffino spa, Via Aretina 42, 50065 Pontassieve, Firenze)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.

Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines

Wine quality and safety are the main concerns of consumers and health agencies. Biogenic amines and polyamines, depending on their concentration and on individuals, in wine can constitute a potential public health concern due to their physiological and toxicological effects

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Bioanalytical workflow for exploring the chemical diversity and antioxidant capacity of grape juice peptides

The oxidative stability of white wines is related to a flow of chemical reactions involving a number of native wine containing compounds composing their antioxidant metabolome.

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.