Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione della Franciacorta: il modello viticolo della DOCG

La zonazione della Franciacorta: il modello viticolo della DOCG

Abstract

[English version below]

La Franciacorta è una piccola regione collinare della provincia di Brescia. Il territorio è molto eterogeneo sia dal punto di vista geologico, che geomorfologico e pedologico. Circa 1.000 ettari sono destinati alla produzione di uve Chardonnay, Pinot bianco e Pinot nero per il vino Franciacorta ottenuto unicamente utilizzando la lunga fermentazione naturale in bottiglia. Al fine della zonazione viticola l’area è stata caratterizzata dal punto di vista climatico, pedologico e vitienologico.
L’inquadramento climatico è stato condotto mediante l’analisi dei dati meteorologici disponibili in relazione alle variabili geografiche e territoriali ad essi correlate (copertura del suolo, giacitura, esposizione, pendenza, distanza dal lago).
L’indagine pedologica condotta nei terreni vitati, ha permesso la produzione di una carta dei suoli in scala 1:25.000 suddivisa in 68 unità cartografiche organizzate in 25 unità di paesaggio. Per l’indagine viticola sono stati individuate 39 parcelle in 26 vigneti rappresentativi della variabilità pedo-climatica e colturale dell ‘area.
In tutte le parcelle e per i tre anni (92, 93 e 94) è stato seguito l’andamento dellefasifenologiche, sono stati rilevati i dati vegeto-produttivi, campionate le dinamiche di maturazione e le caratteristiche qualitativi del mosto. Alla vendemmia è stato raccolto un campione d’uva sufficiente per la microvinificazione.
I vini ottenuti sono stati sottoposti ad analisi sensoriale. L’elaborazione statistica dei dati raccolti, effettuata in tre fasi successive (fase esplorativa, mediante metodi di clustering, per individuare le parcelle con comportamento vegeto-produttivo affine; fase deduttiva per individuare le caratteristiche pedopaesaggistiche comuni ai gruppi definiti nella prima fase, fase validativa, mediante modelli ANOVA, per verificare la significatività statistica delle différente tra le aggregazioni di parcelle) ha consentito di individuare 6 Unità Vocazionali ove il comportamento dei vigneti è risultato diverso negli aspetti vegeto-produttivi, nelle dinamiche della a maturazione nonché nel profilo sensoriale dei vini ottenuti.
La chiave interpretativa di queste aggregazioni è risultata essere legata ai parametri pedologici connessi all’ alimentazione idrica della vite in relazione sia alle possibilità di riserve lungo il profilo radicale, sia alle differenti capacità di drenaggio.

Franciacorta is a small hilly region located in the Brescia province (Northern Italy). Its territory is very heterogeneous both from the geological, geomorphological and pedological point of view. Approximately 1.000 hectares are devoted to yield Chardonnay, Pinot Blanc and noir grapes to produce wine by natural fermentation in bottle. For the viticultural zoning the area has been characterized for the climate, the soils, the viticulture and the enological properties. The climatic variability has been described by the analysis of the available meteorological data in relation to the territorial and geographical variables correlated to it (soil covering, slope, topography, exposition, and distance from the lake).
The pedological survey carried out in the vineyards has hallowed to produce a soil map on a scale of 1:50.000 composed by 68 soil map units organized in 25 landscape units. For the viticultural survey, 39 trial sites representative of soil, climate and agronomical has been chosen. In all the sites for three years (’92, ’93 and ’94) grapevine phenology, yield, and vegetative growth, maturation curves and must composition has been detected. At vintage a sample of grape adequate for microvinification was collected. Wines have been evaluated by sensorial analysis. The statistical data processing carried out by three consecutive steps (exploratory step, by clustering methods, to find the sites with a similar vegetative and productive behavior; deductive step to find the land characteristics which can link the groups defined in the previous step; validation step, by ANOVA models, to verify the statistical significance of the differences detected among the groups) has allowed to define 6 Land Suitability Units, where vineyards resulted different in the vegetative and productive behavior, in the maturation patterns and in sensory properties of the wines. The interpretation key of grouping results was explained by the soil parameters linked to the soil moisture regime both for the available water content and the drainage capacity.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

C.A. PANONT (1), G. COMOLLI (2)

(1) Responsabile ufficio tecnico – Consorzio Vini Franciacorta
(2) Direttore – Consorzio Vini Franciacorta

Keywords

Analisi sensoriale, Cinetiche di maturazione, Franciacorta, Microvinificazioni, Zonazione
Sensory analisys, maturation kinetics, Franciacorta, Microvinificatin, Zoning

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Stems may bring various benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity.

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique.

Mining belowground and aboveground microbiome data to identify microbial biomarkers of grapevine health and yield

Vineyards are home to a wide diversity of microorganisms that interact with plants and with each other.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.