Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione della valle d’Illasi (Verona)

La zonazione della valle d’Illasi (Verona)

Abstract

In the bottom of Val d’Illasi (Verona province), one of the major valleys which passes through the Lessini mountains, viticulture is widely extended. In the territory belonging to Illasi and Tregnago villages, which includes ca. 1100 ha of vineyards, devoted to produce Soave and Valpolicella DOC wines, an experimental survey was conducted on a network of twenty five reference vineyards. The area was characterized for soils, climate, viticulture and enological properties. The pedagogical survey carried out in the vineyards allowed to produce a soil map on a scale of 1:20.000 composed by 18 soil map units. In all the reference vineyards for three years (’93- ’95) grapevine phenology, yield, and vegetative growth were detected; during ripening maturation curves were monitored by juice composition. At vintage a sample of grape adequate for microvinification was collected. Wines were evaluated by sensorial analysis. The statistical data processing allowed to define 6 Land Suitability Units (2 for Soave and 4 for Valpolicella DOC), where vineyards resulted different in the vegetative and productive behavior, in the maturation patterns and in sensory properties of the wines. A satisfactory correlation among soil type x altitude interaction on phenology, vine potential yield and vegetative growth, grape and wine quality was able to explain the results, which were summarized in a Land Suitability map. Moreover, land characteristics and evaluation allowed to produce some Land Viticultural maps.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

FAILLA O. (1), SCIENZA A. (1), FIORINI P . (2), MINELLI R. (3)

(1) lstituto di Coltivazioni Arboree – Università degli Studi – Milano via Celoria
(2) Cantina Sociale – lllasi (Vr)
(3) Pedologo Rovato (Bs)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape

Application of treatments to delay the ripening of grape varieties cultivated in valpolicella

Winegrape cultivars are particularly sensitive to temperature and recent changes in climate have advanced the onset of berry ripening, resulting in unbalanced fruit composition at harvest.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Quelles cibles moléculaires pourraient expliquer l’effet du terroir sur la composition des baies en sucres et acides?

Le manque de connaissances concernant la physiologie de la maturation du raisin a longtemps interdit d’interpréter l’effet du terroir ou du millésime sur la qualité des vendanges en termes moléculaires. L’hypothèse selon laquelle c’est la perméabilité membranaire qui contrôlerait le sens comme l’intensité du stockage des acides est pourtant déjà ancienne (1). L’étude du transport des acides organiques et de son coût énergétique permet d’avancer certaines hypothèses concemant les sites potentiels de la régulation du contenu en sucres et acides du raisin sous l’effet de paramètres environnementaux.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.