Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione della valle d’Illasi (Verona)

La zonazione della valle d’Illasi (Verona)

Abstract

In the bottom of Val d’Illasi (Verona province), one of the major valleys which passes through the Lessini mountains, viticulture is widely extended. In the territory belonging to Illasi and Tregnago villages, which includes ca. 1100 ha of vineyards, devoted to produce Soave and Valpolicella DOC wines, an experimental survey was conducted on a network of twenty five reference vineyards. The area was characterized for soils, climate, viticulture and enological properties. The pedagogical survey carried out in the vineyards allowed to produce a soil map on a scale of 1:20.000 composed by 18 soil map units. In all the reference vineyards for three years (’93- ’95) grapevine phenology, yield, and vegetative growth were detected; during ripening maturation curves were monitored by juice composition. At vintage a sample of grape adequate for microvinification was collected. Wines were evaluated by sensorial analysis. The statistical data processing allowed to define 6 Land Suitability Units (2 for Soave and 4 for Valpolicella DOC), where vineyards resulted different in the vegetative and productive behavior, in the maturation patterns and in sensory properties of the wines. A satisfactory correlation among soil type x altitude interaction on phenology, vine potential yield and vegetative growth, grape and wine quality was able to explain the results, which were summarized in a Land Suitability map. Moreover, land characteristics and evaluation allowed to produce some Land Viticultural maps.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

FAILLA O. (1), SCIENZA A. (1), FIORINI P . (2), MINELLI R. (3)

(1) lstituto di Coltivazioni Arboree – Università degli Studi – Milano via Celoria
(2) Cantina Sociale – lllasi (Vr)
(3) Pedologo Rovato (Bs)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Enhancing sustainability in winemaking: the role of PIWI in South Tyrol

The adoption of PIWI (Pilzwiderstandsfähige) grape cultivars, bred for resistance to fungal diseases, is a transformative step towards sustainable winemaking.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

Manipulating grapevine bud fruitfulness

Bud fruitfulness is a key component of reproductive performance of grapevine. It plays a significant role in annual yield variation of vineyards as it is a prerequisite of crop production in the following season. Various exogenous and endogenous factors influencing the development of inflorescence primordia (IP) have been studied. However, the research on molecular genetic control of bud fruitfulness, especially how it interacts with environmental factors is still lacking. This study aims to investigate the molecular mechanism of effects of temperature and light on grapevine bud fruitfulness during initiation and differentiation of IP.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

SmartGrape: early detection of cicada-borne vine diseases using field spectroscopy and detection of volatile plant scents

Bois noir (BN) is a cicada-transmitted grapevine disease that today causes up to 50% yield and vine loss in vineyards. It is caused by the phytoplasma Candidatus Phytoplasma solani (16SrXII-A).