Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione della valle d’Illasi (Verona)

La zonazione della valle d’Illasi (Verona)

Abstract

In the bottom of Val d’Illasi (Verona province), one of the major valleys which passes through the Lessini mountains, viticulture is widely extended. In the territory belonging to Illasi and Tregnago villages, which includes ca. 1100 ha of vineyards, devoted to produce Soave and Valpolicella DOC wines, an experimental survey was conducted on a network of twenty five reference vineyards. The area was characterized for soils, climate, viticulture and enological properties. The pedagogical survey carried out in the vineyards allowed to produce a soil map on a scale of 1:20.000 composed by 18 soil map units. In all the reference vineyards for three years (’93- ’95) grapevine phenology, yield, and vegetative growth were detected; during ripening maturation curves were monitored by juice composition. At vintage a sample of grape adequate for microvinification was collected. Wines were evaluated by sensorial analysis. The statistical data processing allowed to define 6 Land Suitability Units (2 for Soave and 4 for Valpolicella DOC), where vineyards resulted different in the vegetative and productive behavior, in the maturation patterns and in sensory properties of the wines. A satisfactory correlation among soil type x altitude interaction on phenology, vine potential yield and vegetative growth, grape and wine quality was able to explain the results, which were summarized in a Land Suitability map. Moreover, land characteristics and evaluation allowed to produce some Land Viticultural maps.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

FAILLA O. (1), SCIENZA A. (1), FIORINI P . (2), MINELLI R. (3)

(1) lstituto di Coltivazioni Arboree – Università degli Studi – Milano via Celoria
(2) Cantina Sociale – lllasi (Vr)
(3) Pedologo Rovato (Bs)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (5)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Seasonal variations and climate interactions with phenolic extractability of Pinot noir across the whole winemaking process

Context and Purpose of the Study. A deeper understanding of the relationship between weather conditions and wine quality is essential for assessing the impact of climate change and developing effective adaptation strategies.

CIEDE2000 colour difference value as a parameter for tracing the ageing process on wood aged spirits

It is quite common nowadays to carry out analyses which allow to control the ageing of spirits that are aged in wood casks. Many control parameters have been previously studied, such as the concentration of different phenolic compounds or the Total Polyphenol Index, in order to better understand the ageing process of wood aged spirits. On the other hand, it is frequent to analyse as a physical parameter the colour of those spirit samples, by stating them as an array of three coordinates from various colour spaces as CIE L*a*b* or CIE L*C*H*.

Tools for terroir classification for the grape variety Kékfrankos

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary.