Terroir 1996 banner
IVES 9 IVES Conference Series 9 Nuove tecnologie per la viticoltura in zone di alto valore ambientale

Nuove tecnologie per la viticoltura in zone di alto valore ambientale

Abstract

[English version below]

Gli autori presentano gli ultimi risultati delle ricerche dei DIAF sulla meccanizzazione delle operazioni colorali in zone di difficile accesso e transitabilità quali le aree marginali, i terreni terrazzati e altre realtà agricole caratterizzate da spazi estremamente ristretti (vivaismo, orticoltura, ecc.).
Le prime esperienze risalgono agli anni ’90 quando furono realizzati prototipi per la raccolta del ginepro e successivamente per la raccolta del caffe; dal 1994 gli studi si sono localizzati sul Progetto Candia che prevede la meccanizzazione di vigneti posti su pendici terrazzate a forte declività; sono state realizzare due macchine motrici che per la loro ergonomia, maneggevolezza e dotazione dei sistemi di accoppiamento normalizzati, costituiscono una nuova categoria di macchine agricole che possono convenientemente sostituire i trattori monoasse.

The DIAF has faced mechanization problems of terraced and strong declivity zones particularly in the vineyard area of the Candia in which a project promoted and financed by ARSIA (Tuscan regional agency for the development and innovation in the agricultural and forestry sector) is in progress. Two prototypes of track-laying machine constituting a new category of agricultural tractors have been realized. In particular this machinery is designed as movable power station having hydraulic and electro-mechanic standardized power take off. The concept adopted to realize their design takes into consideration multifunctional and manageable equipment like the two wheeled walking tractor overcoming problems of stability obtained with the handle and of the necessary strength to steer machine.
This is particularly important in zones of difficult accessibility for ingrown spaces and for steep inclinations. Furthermore many modem agricultural machines require elevated powers not feasible with walking tractors. The prototypes are designed as a motorized frame with tracks and hydrostatic transmission for easier driving: this system also allows rapid turn back important in small zones. The operator is placed in no external position for safer utilization in dangerous situations. Hydrostatic lift and standard electro controlled p.t.o. permit no easier and more precise equipment control.
The two tractors have different power (13,5 and 18 kW) and two different link systems (easy clutch for light tools and the classical 3 points lift). The ergonomy and safety of this new machinery make it a real evolution in farm mechanization a and.
Beyond the use in the vineyard, these machine scan be used for further applications: olive crops in the terraced areas where it is not possible to adopt classical tractors, the nursery crops, for horticulture and in woods and parks management.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

MAURIZIO GIOVANNETTI (1), MARCO VIERl (2), MASSIMO ZOLl

(1) ARSIA. Agenzia regionale toscana per lo sviluppo agricolo e forestale.
Via Pietrapiana 30, 50121 Firenze (ltaly)
(2) DIAF. Dipartimento di ingegneria agricola e forestale, Università di Firenze. Piazzale delle Cascine 15, 50144 Firenze (ltaly)

Contact the author

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Advances in phenology modelling of the grapevine

Historical records of grapevine phenology have been collected over decades throughout different winegrowing regions. These records have demonstrated advances in key developmental stages such as budburst, flowering and veraison because of increased temperatures due to climate change.

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

A lower rate of grape berry transpiration delays ripening and reduces flavonoid content

Exposing berries to solar radiation improves most berry composition traits. Many of these effects have been linked to photomorphogenic mechanisms and berry temperature.

Explorando el potencial bioprotector de levaduras nativas no-Saccharomyces en la vinificación: resultados preliminares

The use of the term bioprotection in winemaking refers to the use of non-chemical methods to prevent the development of undesirable microorganisms (yeasts and/or bacteria). The reason for studying this method is mainly as a natural alternative to the addition of sulfites during the pre-fermentation stages. In winemaking, the addition of s02 has multiple functions, the main ones being antiseptic and antioxidant power.