Terroir 1996 banner
IVES 9 IVES Conference Series 9 Nuove tecnologie per la viticoltura in zone di alto valore ambientale

Nuove tecnologie per la viticoltura in zone di alto valore ambientale

Abstract

[English version below]

Gli autori presentano gli ultimi risultati delle ricerche dei DIAF sulla meccanizzazione delle operazioni colorali in zone di difficile accesso e transitabilità quali le aree marginali, i terreni terrazzati e altre realtà agricole caratterizzate da spazi estremamente ristretti (vivaismo, orticoltura, ecc.).
Le prime esperienze risalgono agli anni ’90 quando furono realizzati prototipi per la raccolta del ginepro e successivamente per la raccolta del caffe; dal 1994 gli studi si sono localizzati sul Progetto Candia che prevede la meccanizzazione di vigneti posti su pendici terrazzate a forte declività; sono state realizzare due macchine motrici che per la loro ergonomia, maneggevolezza e dotazione dei sistemi di accoppiamento normalizzati, costituiscono una nuova categoria di macchine agricole che possono convenientemente sostituire i trattori monoasse.

The DIAF has faced mechanization problems of terraced and strong declivity zones particularly in the vineyard area of the Candia in which a project promoted and financed by ARSIA (Tuscan regional agency for the development and innovation in the agricultural and forestry sector) is in progress. Two prototypes of track-laying machine constituting a new category of agricultural tractors have been realized. In particular this machinery is designed as movable power station having hydraulic and electro-mechanic standardized power take off. The concept adopted to realize their design takes into consideration multifunctional and manageable equipment like the two wheeled walking tractor overcoming problems of stability obtained with the handle and of the necessary strength to steer machine.
This is particularly important in zones of difficult accessibility for ingrown spaces and for steep inclinations. Furthermore many modem agricultural machines require elevated powers not feasible with walking tractors. The prototypes are designed as a motorized frame with tracks and hydrostatic transmission for easier driving: this system also allows rapid turn back important in small zones. The operator is placed in no external position for safer utilization in dangerous situations. Hydrostatic lift and standard electro controlled p.t.o. permit no easier and more precise equipment control.
The two tractors have different power (13,5 and 18 kW) and two different link systems (easy clutch for light tools and the classical 3 points lift). The ergonomy and safety of this new machinery make it a real evolution in farm mechanization a and.
Beyond the use in the vineyard, these machine scan be used for further applications: olive crops in the terraced areas where it is not possible to adopt classical tractors, the nursery crops, for horticulture and in woods and parks management.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

MAURIZIO GIOVANNETTI (1), MARCO VIERl (2), MASSIMO ZOLl

(1) ARSIA. Agenzia regionale toscana per lo sviluppo agricolo e forestale.
Via Pietrapiana 30, 50121 Firenze (ltaly)
(2) DIAF. Dipartimento di ingegneria agricola e forestale, Università di Firenze. Piazzale delle Cascine 15, 50144 Firenze (ltaly)

Contact the author

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Grape berry size is a key factor in determining New Zealand Pinot noir wine composition

Making high quality but affordable Pinot noir (PN) wine is challenging in most terroirs and New Zealand’s (NZ) situation is no exception. To increase the probability of making highly typical PN wines producers choose to grow grapes in cool climates on lower fertility soils while adopting labour intensive practices. Stringent yield targets and higher input costs necessarily mean that PN wine cost is high, and profitability lower, in line-priced varietal wine ranges. To understand the reasons why higher yielding vines are perceived to produce wines of lower quality we have undertaken an extensive study of PN in NZ. Since 2018, we established a network of twelve trial sites in three NZ regions to find individual vines that produced acceptable commercial yields (above 2.5kg per vine) and wines of composition comparable to “Icon” labels. Approximately 20% of 660 grape lots (N = 135) were selected from within a narrow juice Total Soluble Solids (TSS) range and made into single vine wines under controlled conditions. Principal Component Analysis of the vine, berry, juice and wine parameters from three vintages found grape berry mass to be most effective clustering variable. As berry mass category decreased there was a systematic increase in the probability of higher berry red colour and total phenolics with a parallel increase in wine phenolics, changed aroma fraction and decreased juice amino acids. The influence of berry size on wine composition would appear stronger than the individual effects of vintage, region, vineyard or vine yield. Our observations support the hypothesis that it is possible to produce PN wines that fall within an “Icon” benchmark composition range at yields above 2.5kg per vine provided that the Leaf Area:Fruit Weight ratio is above 12cm2 per g, mean berry mass is below 1.2g and juice TSS is above 22°Brix.

Grapevine drought tolerant ideotypes to adapt viticulture to climate change

Climate change is challenging the resilience of grapevine, one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach that must include new management strategies, increased irrigation efficiency, and the identification of more drought tolerant genotypes.

Xylem vessel blockages in grape pedicel growing in tropical climate observed by microtomography

In grape berry pedicel, xylem hydraulic conductance can be impaired by blockage deposition in the lumen of xylem elements. However, the varietal difference of the interruptions has not yet been characterized. In this preliminary work, we utilized synchrotron x-ray computed microtomography experiments performed at MOGNO beamline (LNLS – Brazil) to identify possible blockage sites in natural grape pedicel xylem. For this, we imaged dehydrated pedicel’s stem portion from the Niagara Rosada variety in three different phenological stages (Pre-veraison (PreV), veraison (V) and post-veraison (PostV). The reconstructed tridimensional images with a voxel size of 1.16 µm were segmented for the identification of xylem vessel lumens. After analysing one pedicel stem per stage, we identified 658 vessels without occlusion throughout his axial plane and 41 in which we could identify possible interruptions.

Stomatal behaviour of three minority grapevine varieties grown in the La Mancha region (Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...