Terroir 1996 banner
IVES 9 IVES Conference Series 9 Stabilità dei caratteri fenotipici dl alcune cv in diversi pedopaesaggi friulani. Applicazione del metodo nella caratterizzazione viticola del comprensorio DOC “Friuli-Grave”

Stabilità dei caratteri fenotipici dl alcune cv in diversi pedopaesaggi friulani. Applicazione del metodo nella caratterizzazione viticola del comprensorio DOC “Friuli-Grave”

Abstract

This communication was estracted from a study concerning the viticultural characterization of A.V.A. “Friuli-Grave” area sponsored by Chamber of Commerce of Pordenone.
For the application of ecovalence stability index proposed by Wricke (1962) two traditional varieties cultivated in the area under observation (Tocai and Sauvignon Blanc) were chosen, stationed in 13 different places (guide vineyards), representative of 11 soil landscapes. Through informations collected by basis soil mapping (geological, morphological and historical maps) and during country relief, a soil landscapes map was produced, in order to individuate the guide-vineyards.
During this research, main vegeto-productive vine performances were evaluated, investigating, at the same time, the most important compositive must parameters.
All these informations allowed to estimate the vine-environment relationship and in this case the level of phenotypical characters stability.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

G. MICHELUTTl (1), G. COLUGNATl (2), M. MASOTTl (2) , P. BELLANTONE (1), G.CRESPAN (2), F. ZANELLI (3)

(1) ERSA, Servizio Sperimentazione Agraria, Via Sabbatini 5 -33050 Pozzuolo del Friuli (UD)
(2) ERSA, Centro Pilota Vitivinicoltura, Via 3a Armata 69 -34170 Gorizia
(3) Consorzio Tutela Vini DOC “Friuli-Grave”, Via Oberdan 26-33170 Pordenone

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

Sensory and chemical phenotyping of wines from a F1 grapevine population

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

Bud fruitfulness in Vitis vinifera L. cv. Chardonnay in cool climate regions in South Africa

Bud fruitfulness is a key determinant of the potential and the actual yield. The formation of the grapevine yield spans over a period of two consecutive growing seasons (Ferrara & Mazzeo, 2023).

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.