Terroir 1996 banner
IVES 9 IVES Conference Series 9 Studio preliminare sulla microzonazione Bioclimatica condotto in un’area viticola collinare

Studio preliminare sulla microzonazione Bioclimatica condotto in un’area viticola collinare

Abstract

[English version below]

La caratterizzazione bioclimatica del territorio rappresenta un elemento sempre più impor­tante per il miglioramento dell’ attività agricola. La conoscenza degli andamenti assunti dai parametri meteorologici puà consentire di individuare le peculiarità dei singoli appezzamenti aziendali, ottimizzando le scelte sia in termini tattici (esecuzione dei più opportuni interventi colturali) che strategici (scelta delle specie o varietà più idonee a valorizzare ciascun am­biente). La temperatura dell ‘aria è uno dei fattori climatici che maggiormente influenza lo sviluppo e la crescita della vite e rappresenta l’elemento centrale per molti studi di zonazione bioclimatica condotti su macro e mesoscala. Considerando che nelle nostre zone la viticoltu­ra di qualità è presente soprattutto in ambienti collinari dove la variabilità termica è accen­tuata, lo studio delle relazioni esistenti fra regime termico, caratteristiche del territorio e comportamenti vegeto-produttivi della vite assume un ‘importanza rilevante soprattutto quando condotto a scala inferiore. Nel presente studio all’interno dell’azienda “Fattoria di Poggio Casciano” (circa 100 ha di superficie con altitudine compresa tra 120 e 270 m s.l.m.), sita nella zona viticola del Chianti in Provincia di Firenze, sono state collocate 24 stazioni termometriche in posizioni rappresentative delle principali caratteristiche topografiche. Sul­la varietà Sangiovese sono stati inoltre rilevati i più importanti parametri fenologici e pro­duttivi. I dati raccolti hanno permesso di analizzare le principali caratteristiche climatiche del territorio considerato, l’influenza che i singoli parametri topografici esercitano sull’an­damento termico e le relazioni clima – pianta.

The bioclimatic classification of territory represents one of the most important point in the improving of agricultural activity. The knowledge of climatic trends can allow to assess the main characteristics of the considered area, thus improving decision making both for strategy (choices of crop, cultivar, level of input required) and tactical aims (day-to-day decision taken during the growing season). Air temperature is one of the most important climatic elements, affecting growth and development of crop and representing the basis of many bioclimatic classifications at meso and macro-scale. However in our regions high quality viticulture is performed in hilly areas, where strong temperature variability can be found. Thus, the analysis of the relationships among temperature patterns, territory characteristics and grapevine cultivation seems to be very important particularly at micro-scale. On these bases, 24 temperature stations were located according to the main topographical characteristics of the “Fattoria Poggio Casciano” farm (about 100 ha with an elevation ranged from 120 to 270 meters above sea level), located in Chianti area close to Florence – Italy. On Sangiovese variety, the main phrenological and productive parameters were monitored during the growing season. Finally, collected data were analyzed to assess the climatic characteristics of the area, the influence of the single topographical parameters on temperature trends, the relationships between climate and crop.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

SIMONE ORLANDINI*, MARCO MANCINI**

*CNR-IATA. Piazzale delle Cascine 18. 50144 Firenze, ltalia
**CeSIA – Accademia dei Georgofili. Logge Uffizi Corti. 50122 Firenze, ltalia

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Aims: This work aimed i) to calibrate the accuracy of estimating vineyard water status by crop water stress index (CWSI) compared to stem water potential; ii) to determine the time interval during the day that best correlates to stem water potential and iii) to understand the its usefulness.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

Efecto de la cota sobre el potencial enológico de tres varietales tintos en el sur de Tenerife

La zona sur de la Isla de Tenerife elabora principalmente vinos blancos. Desde hace unos años se intenta elaborar mayor cantidad de vinos tintos, siendo los resultados obtenidos variables en función

The relationship between wind exposure and viticultural performance of Vitis vinifera L. cv. Merlot in a coastal vineyard (South Africa)

The South Western Cape of South Africa is exposed to strong southerly and south easterly synoptic winds during the growth period of the grapevine. The development of sea breezes in the afternoon is also a phenomenon associated with the ripening period of grapes cultivated in this coastal area. Wind is one of the environmental variables having the greatest spatial variation but the implications of regular exposure to wind for the performance of the grapevine has not yet been determined for vineyards in the South Western Cape. This study was initiated to meet this need.
The study was conducted in a hedge-trellised vineyard of Vitis vinifera L. cv Merlot with north east – south west row direction. Thirty experimental sites, each consisting of 14 vines, were identified as being exposed to wind or sheltered based on hand-held anemometer readings during the 2001/2002 season. Four stationary anemometers were strategically positioned between the thirty sites. Stomatal conductance and leaf temperature were measured with a PP systems porometer. Vegetative and yield measurements were performed during the 2002/2003 season. The t-test of equal variance was used to determine significant differences in measured parameters between exposed and sheltered grapevines.
Stomatal conductance and leaf area were significantly reduced by exposure to wind. This was associated with a significant reduction in the leaf area of primary shoots, related to shorter shoots, but a significant augmentation of secondary shoot leaf number and area. The number of bunches per vine and yield were also reduced for exposed vines. The berry potassium content was significantly increased for exposed grapevines.
This demonstrates that exposure to wind can result in significant within-vineyard, and potentially between-vineyard, variability in grapevine physiology, vegetative growth, yield and berry composition, with implications for wine style and quality.