Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonazione del comprensorio soave sulla base delle caratteristiche climatiche, pedologiche e viticole

Zonazione del comprensorio soave sulla base delle caratteristiche climatiche, pedologiche e viticole


[English version below]

A tre anni dal suo inizio, nel 1997 si è conclusa la prima fase della ricerca “Caratterizzazione della produzione DOC Soave”. Lo studio ha basato il suo percorso sperimentale su alcuni punti fondamentali tra i quali:
• Recupero di tutte le informazioni storico-colturali sul vino Soave e sul suo territorio di produzione.
• Sulla base di questo bagaglio conoscitivo, suddivisione dell’area DOC in 14 possibili e potenziali sottozone individuabili per caratteri ambientali (giacitura, altitudine, esposizione, litologia etc.).
• Raccolta nel triennio dei dati di precipitazione e di temperatura. Analisi della tessitura del terreno e valutazione annuale dei bilanci idrici e degli stati di sofferenza del vigneto in seguito a insufficiente disponibilità in acqua.
• Esame della modalità di potatura invernale, del carico produttivo per pianta e per ettaro, vinificazione separata delle 14 sottozone.
• Valutazione sensoriale dei vini.
Sulla base delle informazioni ricavate dalle osservazioni di cui sopra, si è ottenuta una mappa della tipicità e dell’attitudine del comprensorio, fornendo ipotesi di valutazione del vino Soave slegate dal prevalere di alcuni luoghi comuni e legate invece alla effettiva potenzialità produttiva delle diverse zone. Le zone stesse sono risultate raggruppabili in alcuni comprensori più vasti, dei quali si forniscono le prime informazioni che nel proseguo dello studio verranno ulteriormente verificate prima di una loro definitiva codificazione.

Three years after its beginning, the first stage of the study “Characterization of the Soave DOC production”, ended in 1997.
The experimental course of the research was based on some fundamental aspects, including:
• Acquisition of all the historical and cultural information concerning Soave and the territory in which the wine is produced.
• According to this knowledge, the division of the DOC zone into 14 possible and potential subzones those are identifiable through their environmental features (position, altitude, exposure, lithology, etc.)
• Acquisition in the three-year period of data concerning rainfall and temperature. Analysis of the soil texture and yearly assessment of the water budget and stages of vineyard suffering due to the lack of water.
• Examination of the pruning system, productive load per plant and per hectare and separate vinification of the 14 zones.
• Sensory assessment of wines.
The information obtained from the aforementioned observations were used to produce a map of the typical features and aptitude of the district. This provided hypotheses for the examination of Soave free from some prevailing commonplaces and more related to the actual production potential of the different areas. The zones could also be grouped into wider districts, of which first information has been provided, and that the continuation of research will further assess before they are coded definitively.


Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article


A. CAL0 (1), D. TOMASl (1), S. BISCAR0 (1), A. COSTACURTA (1), F. GIORGESS1 (1), G. VERZÈ (2), E. TOSI (3), R. Dl STEFAN0 (4)

(1) lstituto Sperimentale per la Viticoltura (Conegliano – TV)
(2) Consorzio Tutela 0.0.C. Soave (Soave-VR)
(3) Provincia di Verona
(4) lstituto Sperimentale per l’Enologia (Asti)


IVES Conference Series | Terroir 1998


Related articles…

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs.

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and

Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Volatile thiols are impact aroma compounds, well-known in the literature for imparting tropical fruit aromas such as passion fruit, guava, grapefruit, and citrus in white wines [1]. More recent evidence suggests that tropical fruit aromas are also caused by other aroma compounds besides thiols, such as fermentation esters, or the interaction between these volatile families. Therefore, the objective of this study was to investigate the effects of combining esters and/or thiols to determine their impact on the fruitiness aroma perception of white wines. Pinot gris wine was produced at the OSU research winery and was dearomatized using Lichrolut® EN. Combinations of fermentation volatile compounds were added to the wine, forming the aroma base. Treatment wines were composed of additions of different concentrations and combinations of thiols and/or esters. Samples were subjected to sensory analysis where forty-six white wine consumers evaluated the orthonasal aroma of the wines and participated in Check-All-That-Apply (CATA).