Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zoning of viticulture in Yugoslavia

Zoning of viticulture in Yugoslavia

Abstract

The last official zoning of Viticulture in Yugoslavia was performed 1978. year, when (according to recommendation of OIV and European Economic Community), regions, sub regions and vineyards districts were established supposing that the varieties which will be exhibit ail the positive agro biological and technological characteristics. Taking into account relief, climate, soil, tradition, agro ecological and agro economic conditions for grape production, in Yugoslavia were postulated the next viticultural areas:

  1. Viticultural region. Region is defined as wider Viticultural area which has similar climate, soil and other properties which are necessary for successful growing of vine.
  2. Viticultural sub region. Sub region is a narrow area which belong to the region but exhibit some of the ecological component is completely different which leads to the stronger differentiation in grape yield and in a quality of wine.
  3. Vineyard district. Present fundamental territorial unit which taking into account agro ecological properties can be defined as a compact homogenous vineyard totality.
    Agroecological selectivity of vine varieties
    Taking into account zonal criteria, vine varieties are selected in next three groups:
    1. Recommended varieties.
    2. Permitted varieties
    3. Forbidden varieties.
    ln Yugoslavia legitimately permitted the production of the next quality categories of wine:
    1. Top wines with geographical origine.
    2. Quality wines with geographical origine.
    3. Table wines with geographical origine.
    4. Table wines without geographical origine
    For all produced categories of wine the legitimate law conditions must be respected in order to be consumed or domestic or foreign market.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

AVRAMOV L. (1), NAKALAMIC A. (1), CINDRIC P. (2), KOVAC V. (3), VUKSANOVIC P. (4)

(1) Faculty of Agriculture, 11081, Zemun, Yugoslavia.
(2) Faculty of Agriculture, 21000, Novi Sad, Yugoslavia
(3) Faculty of Food Technology, 21000 Novi Sad, Yugoslavia
(4) Ministry of Agriculture, 81000, Podgorica, Yugoslavia

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

Qualitative modelling of factors influencing the development of Black rot, for the prediction of damage to bunches

Vines are one of the most pesticide-intensive crops in France, and reducing their use is a major challenge for both the environment and human health.

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.