Terroir 1996 banner
IVES 9 IVES Conference Series 9 Analyse du rôle du terroir dans la définition d’une appellation d’origine

Analyse du rôle du terroir dans la définition d’une appellation d’origine

Abstract

In France, the definition of appellations of origins is entrusted to the Institut National des Appellations d’Origine. (‘NAO). With the increase in price of appellations of origin vine­yards and considering the interests at stake, Institut National des Appellations d’Origine and the Institut National de Recherche Agronomique (INRA) established a work group in 1993 in order to study the “terroir-wine” relationship as precisely as possible, taking into account the knowledge acquired by researchers of the INRA and the experience in the field of the agents of the INAO. Four years of work by this group have allowed for significant progress to be made in the knowledge of the role of terroir in the definition of appellations of origin in France. Thus, the group carried out, among other things, a research based on the different situations in France on the respective importance of natural factors and human factors in the conception of AOC (Appellations d’Origine Contrôlées); it demonstrated how the historical and human evolution of certain regions have led to the recognition of several appellations within identical terroirs or group of terroirs, or the definition of certain AOCs within several different terroirs. This study clearly specified the respective rotes of natural factors (soil, climate) and humanfactors in the definition of AOC. It shows that in certain cases, human factors play a ro/e which is much more important than what was acknowl­edged so far. However, it does not diminish the essential role of terroir as an exceptional natural medium for the vineyard.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

JACQUES FANET

I.N.A.O., 138 Champs Elysées, 75008 PARIS

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2.

Exploring physiological diversity in Vitis genotypes: hydraulic traits in vines for oenological purposes and vines for table grapes

to maintain viticulture under global warming conditions, it is important to carefully select the appropriate genotypes for each vine-growing region and develop cultivars that are drought resistant. this ability is highly dependent on hydraulic traits, which are dynamic and vary according to the vine’s developmental stage and climatic conditions. this framework steadily enhances our understanding of the differences in drought resistance among vitis genotypes. however, there is still a need to comprehensively grasp the intra-specific variability, particularly between oenological and table grape cultivars.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Contaminants in Vitis vinifera L. products: levels and potential risks for human health

Vitis vinifera L. derivatives are susceptible to contamination by biological agents (e.g., bacteria, viruses, fungi), and chemical agents (e.g., heavy metals, persistent organic pollutants).