Terroir 1996 banner
IVES 9 IVES Conference Series 9 Come proteggere un territorio viticolo: il punto di vista del giurista

Come proteggere un territorio viticolo: il punto di vista del giurista

Abstract

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici. Nonostante numerose leggi per il riassetto e la difesa del suolo come la Legge 18 maggio 1989 n. 183 ed il D.P.R. 7 gennaio 1992 il nos­tro sistema idrogeologico continua a essere al centro di ripetuti cedimenti determinati dalle caratteristiche fisiche del territorio, dal disordine urbanistico e dalla insufficienza di misure ed interventi di prevenzione, manutenzione e sistemazione idrica. L’ambiente ed il territorio stanno divenendo sempre più fattori critici per la sopravvivenza delle nostre Comunità e vengono quindi assunti come indispensabili elementi di miglioramento dellà qualità della vita.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

PIER GIORGIO PIRRA

Avvocato in cassazione. Via Magenta 45, 12042 Bra (Cuneo)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.

Analysis of some environmental factors and cultural practices that affect the production and quality of the Manto Negro, Callet and Prensal Blanc varieties

45 non irrigated vineyards distributed in the DO (Denomination) Pla i Llevant de Mallorca and the DO Binissalem Mallorca were used to investigate the characteristics of production and quality and their relationships certain environmental factors and cultural practices. The grape varieties investigated are autochthonous to the island of Mallorca, Manto Negro and Callet as red and Prensal Blanc as white. All plants were measured for four consecutive years in the main production and quality parameters. Among the environmental factors, the type of soil has been studied, more specifically its water retention capacity, the planting density, the age of the vineyard and the level of viral infection. The presence or absence of virus seems to have no effect on any component studied in the varieties studied. For the white variety Prensal Blanc age is negatively correlated with production and the number of bunches, nevertheless it does not cause any effect on the required quality parameters. However, for the red varieties Callet and Manto Negro, the age of the plantation is the variable that best correlates with the quality parameters, therefore the old vines should be the object of preservation by the viticulturists and winemakers in order to guarantee its contribution to the quality of the wines made with these varieties.

Geological history and landscape of the Coastal wine-growing region, South Africa

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.