Terroir 1996 banner
IVES 9 IVES Conference Series 9 Diversificazione e valorizzazione di produzioni tipiche sul territorio: I cesanesi

Diversificazione e valorizzazione di produzioni tipiche sul territorio: I cesanesi

Abstract

The zone in which the Cesanese vines are cultivated has a secular tradition of red wine­making. This zone is placed between the Simbruini mountains slopes and the surrounding hills and has pedologicai variability but a very homogeneous microclimate.
These conditions favour high quality of Cesanese grapes and wines. The investigations started for some time, with the contribution of “Regione Lazio”, regarding the characteri­zation and improvement of vine-growing and wine-producing of this zone, pointed out the presence of some “Cesanese di Affile” clones.
Among them will be choosed the best for colour, typicalness and quality. The Cesanese wines, with typical flavour and mellow taste are specially suitable for sweet or dry young wines and for dry wines short-middle aged.
The mixing of grape with high and constant antocyanins content and the grape withering technique, are both able to produce very good wine diversifications.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

ALDO GAROFOLO

lstituto Sperimentale per l’Enologia, Via Cantina Sperimentale 1 – 00049 Velletri – Roma

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Agrovoltaic on vineyards: preliminary resuls on seasonal and diurnal whole-canopy gas exchange

Context and purpose of the study. Albeit standing as a fashionable research topic dual use of land as viti-voltaic still lacks of fundamental knowledge about whole canopy grapevine response to altered microclimate under panels vs open field conditions.

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3