Terroir 1996 banner
IVES 9 IVES Conference Series 9 Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

Abstract

In the province of Frosinone from 1850 they are cultivated in some zones wine grape of French origin like Merlot, Cabernet franc Cabernet sauvignon, Sirah, Pinot noir. The insertion of these varieties was the work of Pasquale Visocchi in the great company of family “Fratelli Visocchi Proprietari” (F. V.P.). He comprised the potentialities of the new varieties in relation to the pedo-climatic characteristics of the local condition. In this zone original red wine was produced and appreciated from Italian and international markets. “F. P. V. ” company, in the sixties for several problem, closed and the original farm was fragmentized. Today the enology activity is exclusively to the familiar consumption, it supplies grapes of optimal quality. The produced grapes are very fine but not the wines.
Although the great vocation to the viticulture of this discrete remains. The necessity to value this district, with particular reference to Atina and the adjacent zones has placed the necessity to recover also the enology vocation of these zones. For this scope the “Istituto Sperimentale per l’Enologia” s.o.p. of Velletri in collaboration with the local agencies has started a plan with the objective to supply useful indications in order to start a qualified enology activity.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

MASSIMO MORASSUT

lstituto Sperimentale per l’Enologia s.o.p. di Velletri
Via Cantina Sperimentale 1, 00049 Velletri, Roma

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Circular viticulture: transforming grapevine waste into sustainable fibers

Annually, around 31.95 million tonnes of grapevine prunings are produced worldwide as agricultural waste.

Publication of the 3rd edition of the OIV ampelographic descriptors

Ampelography is aimed at describing the vine according to several characteristics, such as morphology, agronomic aptitudes, technological potential, and genetics. The description of varieties and species of vitis has long been the subject of numerous scientific and technical studies by eminent specialists for a long time, which have led the OIV to publish in 1983 the “descriptor list for grape varieties and vitis species”, a milestone among the OIV worldwide recognised codes.

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1].

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS