Terroir 1996 banner
IVES 9 IVES Conference Series 9 Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

Abstract

In the province of Frosinone from 1850 they are cultivated in some zones wine grape of French origin like Merlot, Cabernet franc Cabernet sauvignon, Sirah, Pinot noir. The insertion of these varieties was the work of Pasquale Visocchi in the great company of family “Fratelli Visocchi Proprietari” (F. V.P.). He comprised the potentialities of the new varieties in relation to the pedo-climatic characteristics of the local condition. In this zone original red wine was produced and appreciated from Italian and international markets. “F. P. V. ” company, in the sixties for several problem, closed and the original farm was fragmentized. Today the enology activity is exclusively to the familiar consumption, it supplies grapes of optimal quality. The produced grapes are very fine but not the wines.
Although the great vocation to the viticulture of this discrete remains. The necessity to value this district, with particular reference to Atina and the adjacent zones has placed the necessity to recover also the enology vocation of these zones. For this scope the “Istituto Sperimentale per l’Enologia” s.o.p. of Velletri in collaboration with the local agencies has started a plan with the objective to supply useful indications in order to start a qualified enology activity.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

MASSIMO MORASSUT

lstituto Sperimentale per l’Enologia s.o.p. di Velletri
Via Cantina Sperimentale 1, 00049 Velletri, Roma

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Aroma compounds involved in the fruity notes of red wines potentially adapted to climate change.

Currently, climate change represents one of the major issues for the wine sector. The increasing temperature already recorded and expected in the upcoming years reduce the vegetative cycle of the grape varieties planted in Bordeaux area, affecting the physicochemical parameters of grapes and consequently, the quality of wine. From a sensory point of view, the attenuation of the fresh fruity character in some varietals is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive and ecological strategy on global warming, some winegrowers have initiated changes in the Bordeaux blend of vine varieties using late-ripening grape varieties [2]. 

Yeasts protein extracts: new low impact tool for wine protein stability

Yeast protein extracts (ypes) have flocculating properties, allowing clarification of musts and wines. They are already authorized by oiv for fining purposes with a maximum dosage limit of 60 g/hl for red wines, and 30 g/hl for musts, white and rosè wines. The extraction of ypes from the cytoplasm of yeasts (saccharomyces spp) cells is defined by the resolution oiv oeno 452-2012, that indicate also some specification of the final product.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.