Terroir 1996 banner
IVES 9 IVES Conference Series 9 La certificazione ambientale del territorio: fattibilita’ e prospettive

La certificazione ambientale del territorio: fattibilita’ e prospettive

Abstract

In the next years the territorial environmental certification could become realistic if the following conditions will be fully satisfied:
– the enhancement of the environmental awareness among the industries, the public administration, the authorization bodies, the living people of that territory as well as the tourists and visitors.
To reach this stage according to the ISO 14001 standard other activities and experiments are needed, i. e.:
– the development of ISO 14001 Guideline for the territorial application,
– the development of specified environmental training courses,
– the scheduling and implementation of the environmental training to the public administrators and inspectors and to the living people,
– Some instructions to easily inform the tourists and visitors of that territory.
The second stage is the implementation of the Environmental Management Systems producing all the documents required by the ISO 14001 standard and the application guidelines.
In this stage the Environmental Policy of the territory would be defined and some environmental improvement objectives would be choosed, scheduled and implemented. This stage will be completed with the inclusion of the environmental internal audits. The third stage is the assessment and certification phase.
During this phase the auditors of the certification body will assess the performance of the territorial EMS according to the ISO 14001 standard, the guideline, the EMS documentation, the Environmental Policy and improving objectives. The rules and tools for implementing such certification are almost ready, we are looking for some territory and “La valle del Chianti” could be the right one.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

VITO D’INCOGNITO

Take Care S.r.l., Via Caccianino 3 – 20131 Milano

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

Early development of potential wine styles for PIWI varieties in grapevine breeding

In a framework in which climate change is increasingly recognized as a critical global challenge, traditional viticulture must be reconsidered in order to provide better solutions for future needs [1].