Terroir 1996 banner
IVES 9 IVES Conference Series 9 Méthode et outils de valorisation des terroirs en cave coopérative

Méthode et outils de valorisation des terroirs en cave coopérative

Abstract

[English version below]

Depuis le début des années 90, les vignerons des Caves Coopératives de l’Appellation “Côtes du Rhône” se sont penchés, au sein des structures de réflexion du Syndicat Général, sur deux axes de réflexion:
– Détermination des critères de sélection et de rémunération différenciée des apports de vendange;
– Organisation des sélections de vendanges sur la base des terroirs afin d’augmenter quantitativement le potentiel de sélection au sein de l’unité de production.
Une étude conjointe de ces deux axes de préoccupations a conduit le service technique de l’A.O.C. à mettre au point une méthodologie de caractérisation des apports de vendange à la parcelle ainsi qu’à la réception au chai de vinification qui permette d’optimiser quantitativement par une meilleure organisation et qualitativement par une adéquation du processus de vinification aux caractéristiques de la matière première, sa transformation et sa commercialisation. Un logiciel a été conçu et développé spécifiquement pour la mise en œuvre de la méthodologie.
Cette démarche qui permet une véritable transparence entre l’amont viticole et la valorisation au sein de l’unité de vinification peut constituer un outil très efficace dans le cadre d’une démarche de certification d’entreprise.

Since the beginning of the decade, the wine-growers of the AOC Côtes du Rhône cooperatives have concentrated through their Syndicates development committee, on two main areas of research:
– Identification of criteria for the selection of grapes and a sliding scale of remuneration according to the quality of the transportation of the harvest.
– Organization of harvest selection based upon the concept of terroir, so as to increase on a quantitative level, the options for selection at the heart of the production site.
Research on these two important themes has led the AOC technical division to divide a method for assessing harvest transport both in the vineyard and at the vinification site. This will permit better winemaking and marketing, on a qualitative level by ensuring the best vinification methods are used for the grapes concerned, and on a quantitative level, through better organization.
A computer programme has been specifically designed for the development of this method. This process allows complete transparency between vineyard and vinification center and may constitute a highly effective tool for a company wishing to obtain certification of their products.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports.
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90.
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers.

Impact of pruning method on vegetative growth and yield

Over the past fifteen years or so, a number of theories have emerged on more or less new pruning practices.