Terroir 1996 banner
IVES 9 IVES Conference Series 9 Un “GIS” agronomico per l’area a DOC dei Colli Euganei

Un “GIS” agronomico per l’area a DOC dei Colli Euganei

Abstract

L’area a “Denominazione di Origine Controllata Colli Euganei”, riconosciuta con Dpr 13 agosto 1969, è situata a sud-ovest della Provincia di Padova (fig. 1) ed è costituita da un sis­tema collinare di nuclei vulcanici evolutosi morfologicamente. La viticoltura rappresenta un’attività agricola di assoluta rilevanza nella zona, sia in termini di superficie investita, che di produzione lorda vendibile. La produzione vitivinicola locale è supportata dal Consorzio vini DOC dei Colli Euganei, da anni impegnato nel realizzare quell’evoluzione tecnica, sia in vigneto che in cantina, che sia in grado di sfruttare il notevole potenziale qualitativo esistente. Con legge regionale n. 38 del 10.10,89 è stato istituito il Parco Regionale dei Colli Euganei, i cui compiti sono quelli di tutelare i caratteri naturalistici, storici ed ambientali dei territorio e di promuovere le attività economiche tradizionali e compatibili con le esigenze di tutela dell’ambiente.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

ANTONIO DE ZANCHE, GABRIELE ZAMPIERI

ESAV, Ente Sviluppo Agricola del Veneto, Via Uruguay 45 – 35127 Padova

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Aims: Wine typicity is defined as a reflection of varietal origins, cultures and traditions of the wine. These aspects are many times also extremely important when considering a wines quality. However, as climate change occurs the typicity of wines may also change. With the long history of winemaking it is possible to define a wines typicity and how it has changed as climate alters. 

Changes in wine secondary metabolites composition by the timing of inoculation with lactic acid bacteria: impact on wine aroma

For the first time, it was established that the timing of inoculation with LAB could significantly impact the concentration of many secondary metabolites leading to significant aromatic changes. From studied compounds, the most influenced were esters and diacetyl.