Terroir 1996 banner
IVES 9 IVES Conference Series 9 Soil survey and chemical parameters evaluation in viticultural zoning

Soil survey and chemical parameters evaluation in viticultural zoning

Abstract

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.
Realising a territorial study with zoning purposes however, it is always necessary to respect the coherence between aims of work, scale of considered processes, intensity of survey and evaluation model utilised. Thus, the less detailed the scale of investigation, the lower the degree of purity and confidence of geographical information, and the more generic the evaluations.
On the other hand, the way of dealing with the typological information should be different. If the soil survey model individualises soil typologies corresponding to soil series, il is possible to find the soil characters that can be functional for viticultural and oenological results, and the geographic levels at which they can be pointed out.
ln the present work, an example is brought of the possible treatment of information at different geographic generalisation levels, utilising data of some chemical analysis and a soil survey realised in Trentino (northern Italy).

DOI:

Publication date: March 7, 2022

Issue: Terroir 1998

Type: Article

Authors

EDOARDO A.C. COSTANTINI

lstituto Sperimentale per lo Studio e la Difesa del Suolo
Piazza M. D’Azeglio 30, 50121 Firenze, ltalia

Contact the author

Keywords

soil survey, data interpretation, viticultural zoning, Trentino, Italy

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Towards a sustainable winery: revalorization of green CO2 for methane production

The FUELPHORIA project explores innovative pathways for sustainable energy production, with DEMO 2 focused on transforming winery-derived CO₂ into methane (CH₄) using renewable hydrogen (H₂).

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Uncovering the effectiveness of vineyard techniques used to delay ripening through meta-analysis

One of the most concerning trends associated with increasing heat and water stress is advanced ripening of grapes, which leads to harvesting fruit at higher sugar concentrations but lacking optimal phenolic (i.e. color and mouthfeel) and aromatic maturity. Mitigation techniques for this phenomenon have been studied for many years and practices to delay sugar accumulation have been identified, including antitranspirants, delayed pruning and late-source-limitation techniques. Evaluation of the efficacy of these vineyard practices has occurred across a wide range of environments, vintages, varieties and growing conditions. To assess the broader efficacy of these three vineyard practices, which are easy-to-implement and cost-effective, a meta-analytic approach was adopted using data retrieved from 43 original studies.

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology