Terroir 1996 banner
IVES 9 IVES Conference Series 9 Soil survey and chemical parameters evaluation in viticultural zoning

Soil survey and chemical parameters evaluation in viticultural zoning

Abstract

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.
Realising a territorial study with zoning purposes however, it is always necessary to respect the coherence between aims of work, scale of considered processes, intensity of survey and evaluation model utilised. Thus, the less detailed the scale of investigation, the lower the degree of purity and confidence of geographical information, and the more generic the evaluations.
On the other hand, the way of dealing with the typological information should be different. If the soil survey model individualises soil typologies corresponding to soil series, il is possible to find the soil characters that can be functional for viticultural and oenological results, and the geographic levels at which they can be pointed out.
ln the present work, an example is brought of the possible treatment of information at different geographic generalisation levels, utilising data of some chemical analysis and a soil survey realised in Trentino (northern Italy).

DOI:

Publication date: March 7, 2022

Issue: Terroir 1998

Type: Article

Authors

EDOARDO A.C. COSTANTINI

lstituto Sperimentale per lo Studio e la Difesa del Suolo
Piazza M. D’Azeglio 30, 50121 Firenze, ltalia

Contact the author

Keywords

soil survey, data interpretation, viticultural zoning, Trentino, Italy

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

Revealing the origins of old bordeaux wines using terpene quantification

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing (1). Bordeaux red wine ageing bouquet is defined by the association of several odours

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.