Terroir 1996 banner
IVES 9 IVES Conference Series 9 Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

Abstract

Depuis plusieurs années, le développement des moyens informatiques, et notamment des Systèmes d’Information Géographique, ont permis l’émergence d’une approche nouvelle d’analyse et de caractérisation des terroirs viticoles (Morlat, 1989 ; Laville, 1990). Ces méthodes, qui permettent d’identifier des zones ou unités de terroir homogènes, sont basées sur le croisement, l’analyse statistique (notamment l’Analyse en Composantes Principales : A.C.P.) et l’intégration de paramètres décrivant le milieu naturel dans lequel se développe la vigne.

Ces paramètres se rattachent à un nombre restreint de critères élémentaires que l’on peut regrouper en trois grandes catégories :
critères liés à la géomorphologie :
– altitude (en m)
– pente (en %)
– courbure verticale (concavité/convexité, en degrés)
critères liés au climat :
– pluviométrie (en mm par unité de temps)
– température moyenne (en degrés)
– insolation théorique (en W/h/m2)
critères liés au sous-sol : 
– nature du sol
– nature du sous-sol.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

R. WYNS

Bureau de Recherches Géologiques et Minières, Service Géologique National, Département Utilisation Protection de l’Espace géologique, B.P. 6009, 45060 Orléans Cedex 02, France

Contact the author

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.