Terroir 1996 banner
IVES 9 IVES Conference Series 9 Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

Abstract

Depuis plusieurs années, le développement des moyens informatiques, et notamment des Systèmes d’Information Géographique, ont permis l’émergence d’une approche nouvelle d’analyse et de caractérisation des terroirs viticoles (Morlat, 1989 ; Laville, 1990). Ces méthodes, qui permettent d’identifier des zones ou unités de terroir homogènes, sont basées sur le croisement, l’analyse statistique (notamment l’Analyse en Composantes Principales : A.C.P.) et l’intégration de paramètres décrivant le milieu naturel dans lequel se développe la vigne.

Ces paramètres se rattachent à un nombre restreint de critères élémentaires que l’on peut regrouper en trois grandes catégories :
critères liés à la géomorphologie :
– altitude (en m)
– pente (en %)
– courbure verticale (concavité/convexité, en degrés)
critères liés au climat :
– pluviométrie (en mm par unité de temps)
– température moyenne (en degrés)
– insolation théorique (en W/h/m2)
critères liés au sous-sol : 
– nature du sol
– nature du sous-sol.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

R. WYNS

Bureau de Recherches Géologiques et Minières, Service Géologique National, Département Utilisation Protection de l’Espace géologique, B.P. 6009, 45060 Orléans Cedex 02, France

Contact the author

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Unveiling the impact of seasonal weather and fungicide spraying on vineyard autochthonous yeast populations: implications for Riesling wine quality

Fungicide spraying is a common viticultural practice that occurs throughout the growth season that protects developing vines and bunches against diseases caused by fungi or oomycetes.

Territorio e vino tra immagine e comunicazione

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

Publication of the 3rd edition of the OIV ampelographic descriptors

Ampelography is aimed at describing the vine according to several characteristics, such as morphology, agronomic aptitudes, technological potential, and genetics. The description of varieties and species of vitis has long been the subject of numerous scientific and technical studies by eminent specialists for a long time, which have led the OIV to publish in 1983 the “descriptor list for grape varieties and vitis species”, a milestone among the OIV worldwide recognised codes.