Terroir 1996 banner
IVES 9 IVES Conference Series 9 Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

Abstract

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.

The research methodology on viticultural terroirs developed by UVV revolves around two main themes:
– A characterization of terroirs in the field which consists of collecting information relating to the physical components of the environment. Observations on geology, soils and landscapes thus form the basis of the study. This step is similar to a cartographic survey
– A survey conducted among winegrowers in each of the 29 municipalities. This survey is intended to integrate human factors within the study, and to study the possibilities of use as an experimental tool for highlighting the terroir effect. The questionnaire focuses on the behavior of the vine, winemaking, knowledge and empirical management of the terroirs by the winegrower.

This study therefore entails a large volume of information which must be managed in an optimal way to facilitate their processing, while preserving their particular character of localized data. Indeed, there is no direct relationship allowing to associate the data of the investigation on the one hand with those of the characterization on the other hand. The only relationship existing between these two levels of information is of the spatial superposition type. To use it and thus cross the two types of information, it is necessary to manage the associated geographical objects.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

P. BOLO, R. MORLAT, D. RIOUX

INRA.URVV.
42, rue Georges Morel, 49071 Beaucouzé

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Shift of Nitrogen Resources by biotic interaction in grapevine

Grape phylloxera (Daktulosphaira vitifoliae Fitch), a monophagous pest of the grapevine, induces nodosities on the roots through its sap-sucking activity.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

The Bergerac guaranteed vintage area « terroirs »

The vineyard of Bergerac, a guaranteed vintage, is situated in the mid-Lot valley, which has siliceous terraced rows on its hillsides, and on its bordering plateaux, composed of limestone and clay of the tertiary geological eras.

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.