Terroir 1996 banner
IVES 9 IVES Conference Series 9 Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

Abstract

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.

The research methodology on viticultural terroirs developed by UVV revolves around two main themes:
– A characterization of terroirs in the field which consists of collecting information relating to the physical components of the environment. Observations on geology, soils and landscapes thus form the basis of the study. This step is similar to a cartographic survey
– A survey conducted among winegrowers in each of the 29 municipalities. This survey is intended to integrate human factors within the study, and to study the possibilities of use as an experimental tool for highlighting the terroir effect. The questionnaire focuses on the behavior of the vine, winemaking, knowledge and empirical management of the terroirs by the winegrower.

This study therefore entails a large volume of information which must be managed in an optimal way to facilitate their processing, while preserving their particular character of localized data. Indeed, there is no direct relationship allowing to associate the data of the investigation on the one hand with those of the characterization on the other hand. The only relationship existing between these two levels of information is of the spatial superposition type. To use it and thus cross the two types of information, it is necessary to manage the associated geographical objects.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

P. BOLO, R. MORLAT, D. RIOUX

INRA.URVV.
42, rue Georges Morel, 49071 Beaucouzé

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

Estudios de zonificación vitícola en España

La delimitación y caracterización de zonas vitícolas plantea en España problemas específicos no sólo por las características peculiares del territorio sino también por el tamaño

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.