Terroir 1996 banner
IVES 9 IVES Conference Series 9 Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

Abstract

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.

The research methodology on viticultural terroirs developed by UVV revolves around two main themes:
– A characterization of terroirs in the field which consists of collecting information relating to the physical components of the environment. Observations on geology, soils and landscapes thus form the basis of the study. This step is similar to a cartographic survey
– A survey conducted among winegrowers in each of the 29 municipalities. This survey is intended to integrate human factors within the study, and to study the possibilities of use as an experimental tool for highlighting the terroir effect. The questionnaire focuses on the behavior of the vine, winemaking, knowledge and empirical management of the terroirs by the winegrower.

This study therefore entails a large volume of information which must be managed in an optimal way to facilitate their processing, while preserving their particular character of localized data. Indeed, there is no direct relationship allowing to associate the data of the investigation on the one hand with those of the characterization on the other hand. The only relationship existing between these two levels of information is of the spatial superposition type. To use it and thus cross the two types of information, it is necessary to manage the associated geographical objects.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

P. BOLO, R. MORLAT, D. RIOUX

INRA.URVV.
42, rue Georges Morel, 49071 Beaucouzé

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Understanding the impact of climate change on anthocyanin concentrations in Napa Valley Cabernet Sauvignon

Climate change is having a significant impact on the wine industry through more regular drought conditions, fires, and heat events, leading to crop loss. Furthermore, these events can reduce overall quality of the fruit, even when crop yields are not impacted. Anthocyanins are considered one of the most important classes of compounds for red wine production and are known to be sensitive to vine water status and heat events.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

Predictive Breeding: Impact of véraison (onset of ripening) on wine quality

Grapevine breeding focuses on high wine quality and climate-adapted grapevine varieties with fungal disease resistances to be cultivated in a pesticide-reduced and sustainable viticulture.

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions. METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications.

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.