Terroir 1996 banner
IVES 9 IVES Conference Series 9 Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

Abstract

The notion of terroir covers multiple components, from geology, pedology, geomorphology and climatology (Doledec, 1995), to less well-identified aspects but also intervening in the “typicality” of wines. This justifies the “zoning” approach (Moncomble and Panigaï, 1990) to define homogeneous areas, under the same agro-viticultural management and also identified at the product level (Morlat and Asselin, 1992).

Cultivation practices form a component of the “terroir” which should not be neglected because it can be modified by human action. It is therefore necessary to know the consequences of the technical itineraries well, in order to be able to choose them according to the fixed data of the terroir and the desired characteristics of the product.

In this respect, soil maintenance techniques are certainly the most interesting to study, because of their interactions with water supply and vine nutrition. Such interactions have already been studied by viticultural monitoring (Soyer et al ., 1995; Aguhlon and Voile, 1995), but very little work has been devoted to direct measurements on the soil. This is what we have sought to do in the present work, relying on the experimental devices of Plumecoq and Montbré in Champagne and Mâcon-Clessé in Burgundy.

More broadly, our objective is to participate in promoting sustainable management of vineyard soils compatible with quality products. It is in fact a question of researching the most suitable cultural practices for:
1) conserve soils, in the face of “a worrying reactivation of erosion” (Roose, 1994)
2) control their characteristics linked to fertility (structure, organic reserves, biological activities, availability of nitrogen and water ).

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

F. ANDREUX (1), R. CHAUSSOD (2), A. DESCOTES (3), A. LAUMONIER (1,2), J. LEVEQUE (1), D. SAUVAGE (4)

(1) University of Burgundy, GeoSol Team, 6 Boulevard Gabriel. 21000 DIJON
(2) INRA Soil Microbiology, 17 rue Sully, BV 1540, 21034 DIJON cedex
(3) CIVC, 5 rue Henri Martin, BP 135, 51200 EPERNAY
(4) Chamber of Agriculture Service Viticole, 59 rue du 19 Mars 1952 71010 MASON cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.

Yeasts protein extracts: new low impact tool for wine protein stability

Yeast protein extracts (ypes) have flocculating properties, allowing clarification of musts and wines. They are already authorized by oiv for fining purposes with a maximum dosage limit of 60 g/hl for red wines, and 30 g/hl for musts, white and rosè wines. The extraction of ypes from the cytoplasm of yeasts (saccharomyces spp) cells is defined by the resolution oiv oeno 452-2012, that indicate also some specification of the final product.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).