Terroir 1996 banner
IVES 9 IVES Conference Series 9 Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

Abstract

The notion of terroir covers multiple components, from geology, pedology, geomorphology and climatology (Doledec, 1995), to less well-identified aspects but also intervening in the “typicality” of wines. This justifies the “zoning” approach (Moncomble and Panigaï, 1990) to define homogeneous areas, under the same agro-viticultural management and also identified at the product level (Morlat and Asselin, 1992).

Cultivation practices form a component of the “terroir” which should not be neglected because it can be modified by human action. It is therefore necessary to know the consequences of the technical itineraries well, in order to be able to choose them according to the fixed data of the terroir and the desired characteristics of the product.

In this respect, soil maintenance techniques are certainly the most interesting to study, because of their interactions with water supply and vine nutrition. Such interactions have already been studied by viticultural monitoring (Soyer et al ., 1995; Aguhlon and Voile, 1995), but very little work has been devoted to direct measurements on the soil. This is what we have sought to do in the present work, relying on the experimental devices of Plumecoq and Montbré in Champagne and Mâcon-Clessé in Burgundy.

More broadly, our objective is to participate in promoting sustainable management of vineyard soils compatible with quality products. It is in fact a question of researching the most suitable cultural practices for:
1) conserve soils, in the face of “a worrying reactivation of erosion” (Roose, 1994)
2) control their characteristics linked to fertility (structure, organic reserves, biological activities, availability of nitrogen and water ).

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

F. ANDREUX (1), R. CHAUSSOD (2), A. DESCOTES (3), A. LAUMONIER (1,2), J. LEVEQUE (1), D. SAUVAGE (4)

(1) University of Burgundy, GeoSol Team, 6 Boulevard Gabriel. 21000 DIJON
(2) INRA Soil Microbiology, 17 rue Sully, BV 1540, 21034 DIJON cedex
(3) CIVC, 5 rue Henri Martin, BP 135, 51200 EPERNAY
(4) Chamber of Agriculture Service Viticole, 59 rue du 19 Mars 1952 71010 MASON cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Climate, grapes, and wine: structure and suitability in a variable and changing climate

Climate is a pervasive factor in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality

La valorisation des Terroirs Viticoles par les Indications géographiques et les appellations d’origine

Le sujet proposé dans le thème “l’environnement juridique” est plus économique que juridique, et constitue une sorte de complément au sujet qui l’a précédé : analyse des marchés, stratégies commerciales et terroirs”.

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.