Terroir 1996 banner
IVES 9 IVES Conference Series 9 Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

Abstract

L’A.O.C. Saint-Emilion, une des plus prestigieuses du Bordelais, se situe sur la rive droite de la Dordogne en amont de Libourne. Le vignoble est implanté sur des formations géologiques du Tertiaire (Oligocène) et du Quaternaire, sur lesquelles se sont développés des sols très variés. De nombreuses études ont rendu compte de cette hétérogénéité et permis de mieux connaître le fonctionnement et les potentialités viticoles de ces sols (Duteau et al. 1981, Van Leeuwen, 1991).

Dans ce travail, nous avons étudié le comportement des deux principaux cépages noirs de la région, le Cabemet franc et le Merlot noir, sur trois sols : un sol graveleux (G), un sol à sous-sol très argileux (A) et un sol sableux avec une nappe d’eau à portée des racines (S). L’objectif a été de mieux connaître les interactions entre le sol et le cépage, afin de valoriser au maximum les potentialités du terroir par une adaptation judicieuse du cépage au type de sol. Nous présentons ici les résultats obtenus au cours du millésime 1995, qui seront comparés avec ceux obtenus en 1994.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

C. VAN LEEUWEN (1,2), G. SEGUIN (2)

(1) École Nationale d’Ingénieurs des Travaux Agricoles
1, cours du Général De Gaulle B.P. 201, 33175 Gradignan cedex
(2) Faculté D’Œnologie Université Bordeaux II
351 cours de la Libération, 33045 Talence cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Mapping aromatic profiles of Chardonnay and Sangiovese wines in grafting combination with new rootstocks

Rootstocks play a key role in the adaptation of grapevine to environmental conditions, affecting phenology, vigour, yield and grape quality.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.