Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caractéristiques édaphiques et potentialités qualitatives des terroirs du vignoble languedocien

Caractéristiques édaphiques et potentialités qualitatives des terroirs du vignoble languedocien

Abstract

Dans le vignoble languedocien, les potentialités qualitatives des terroirs dépendent surtout de leurs caractéristiques édaphiques : la fertilité agronomique d’une part et sa nature géopédologique d’autre part.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

F. CHAMPAGNOL

U.F.R. de Viticulture – ENSAM-ISW-INRA
2, place Viala, 34060 Montpellier Cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].

Automated red microvinification (1kg) adapted to the needs of varietal innovation

The creation of disease-resistant varieties adapted to climate change is a key challenge for the future of the wine industry. At present, the selection of these new varieties is essentially based on screening for genetic markers of resistance and agronomic criteria, due to the small number of vines available per genotype. Integrating screening for oenological criteria into the early stages of selection would speed up this process.