Terroir 1996 banner
IVES 9 IVES Conference Series 9 Comportement de différents clones de Sauvignon blanc dans certains terroirs viticoles du Friuli-Venezia Giulia (Nord-Est de l’Italie)

Comportement de différents clones de Sauvignon blanc dans certains terroirs viticoles du Friuli-Venezia Giulia (Nord-Est de l’Italie)

Abstract

La réputation mondiale du Sauvignon blanc a amené les techniciens à se poser différentes questions sur la culture de cette variété : choix des localités les mieux adaptées, stratégies agronomiques les plus efficaces et techniques vinicoles les plus appropriées, pour faire ressortir son arôme particulier. Sans doute la région du Friuli Venezia-Giulia (Nord-est de l’Italie) réprésente un terroir viticole très important pour la culture de la cv Sauvignon blanc ; les différentes conditions pédoclimatiques permettent d’obtenir des produits très intéressants pour le profil aromatique. Toutefois la recherche viticole et œnologique a pour objectif actuel l’étude de différents clones pour évaluer leur adaptabilité aux conditions pédoclimatiques de la région afin d’optimiser l’expression des caractéristiques œnologiques et aromatiques en particulier. A ce propos, différents travaux (3, 4) ont clairement établi l’importance des facteurs “terroirs” et “système de culture” sur l’expression de la composition de la grappe et sur le comportement viticole de différentes familles clonales.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

F. BATTISTUTTA (1), E. CELOTTI (1), G. COLUGNATI (2), F. BREGANT (2), R. ZIRONI (1)

(1) Dipartimento di Scienze degli alimenti
Via Marangoni 97, 33100 Udine, Italia
(2) ERSA – Centra Pilota perla Vitivinicoltura – Via 3a armata 69, 34070 Gorizia, Italia

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

New satellite-based sampling protocols for grapevine nutrient monitoring

Extension specialists often recommend nutrient monitoring through leaf blade or petiole sampling twice a season for each vineyard block. However, due to the time and labor required to collect a large, random sample, many growers complete the task infrequently or incorrectly. Readily available remote sensing images capture the vineyard variability at both spatial and temporal scales, which can capture canopy and soil variability and be used to guide growers to representative sampling locations.

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.