Terroir 1996 banner
IVES 9 IVES Conference Series 9 Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

Abstract

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar. Dealu Mare vineyard offers favourable conditions for a higher capitalization of Cabemet Sauvignon, Pinot noir, Merlot and Fetească neagră cultivars. The red wines having a middle or high content in phenolic compounds and a well-balanced phenolic composition are advisable for being developed in oak barrels (Sommers and Pocock, 1990).

The study which was undertaken at the Research Institute for Viticulture and Enology, Valea Calugareasca, during 1987-1995 was pursuing both the evolution of phenolic composition and wines color, and the influence of the keeping container on the quality of Merlot wine.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

M. VARGA, A. TUDORACHE, M. AVRAMESCU, P. BADEA

Research Institute for Viticulture and Enology, Valea Calugareasca,
2040, Prahova district, Romani

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.

New training methods to manage climatic and ecological transitions in perennial fruit crops

Context and purpose. Climate change and the demand for reducing inputs, including chemical compounds, present significant challenges for perennial fruit crops like grapes and apples.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

La zonazione della D.O.C. Bolgheri (Castagneto C.): aspetti metodologici ed applicativi

The results of the first step of the zoning study carried out in Bolghery appellation area (Castagneto Carducci, Tuscany) in the 1993-1995 period have been recently published. Quality factors of Bolgheri appellation and different “terroirs ” were identified.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.