Terroir 1996 banner
IVES 9 IVES Conference Series 9 Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

Abstract

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar. Dealu Mare vineyard offers favourable conditions for a higher capitalization of Cabemet Sauvignon, Pinot noir, Merlot and Fetească neagră cultivars. The red wines having a middle or high content in phenolic compounds and a well-balanced phenolic composition are advisable for being developed in oak barrels (Sommers and Pocock, 1990).

The study which was undertaken at the Research Institute for Viticulture and Enology, Valea Calugareasca, during 1987-1995 was pursuing both the evolution of phenolic composition and wines color, and the influence of the keeping container on the quality of Merlot wine.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

M. VARGA, A. TUDORACHE, M. AVRAMESCU, P. BADEA

Research Institute for Viticulture and Enology, Valea Calugareasca,
2040, Prahova district, Romani

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Modulating the phyllosphere microbiome in grapevine using plant biostimulants to enhance protection against biotic and abiotic stress

Context and purpose of the study. Climate change scenarios predict ever increasing frequency of drought events and coupled with disease outbreaks poses survival risks to perennial fruit crops such as grapevine.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

Oak wood influence on the organoleptic perception of red wine

Some wood substances such as ellagitannins (vescalagin, castalagin, grandinin, roburins (A, B, C, D, E)…) can be extracted during wine ageing in oak barrels. The level of these hydrolysable tannins in wine depends of the species and origin of oak wood as well as its treatment during barrel realization.

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.