Terroir 1996 banner
IVES 9 IVES Conference Series 9 Étude de la flore levurienne de différents terroirs alsaciens

Étude de la flore levurienne de différents terroirs alsaciens

Abstract

L’utilisation de levures sélectionnées est généralement considérée comme le moyen d’éviter les problèmes fermentaires. Néanmoins de nombreux viticulteurs pensent que ces levures sont à l’origine d’une standardisation des vins et militent pour le respect d’une flore indigène (Bourguignon, 1992). De nombreux travaux récents éclairent d’un jour nouveau le concept de flore indigène (Frezier et Dubourdieu, 1992 ; Versavaud et al., 1993 ; Delteil et al., 1996). Dans notre démarche de caractérisation des vignobles alsaciens, ce travail a pour objectifs de fournir des éléments de réponses à deux questions :
– Existe-t’il une flore levurienne “indigène” de Saccharomyces cerevisiae spécifique à chaque terroir ?
– Que devient cette flore au cours d’une vinification traditionnelle ?

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

J.L. LEGRAS, J.P. MEYER, E. LEGNAME, A. SCHAEFFER

INRA, Station de recherches Vigne et Vin, laboratoire d’Oenologie – IPV
8, rue Kleber B.P. 507, 68021 COLMAR Cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are
important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly
focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.