Terroir 1996 banner
IVES 9 IVES Conference Series 9 Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Abstract

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia. Franciacorta viticultural history, as concern the production of sparkling wines with the Italian version of Champenoise method (Franciacorta “metodo tradizionale”), begun in 1960. Nowadays Franciacorta vineyards cover about 1.000 hectares and about 4 million bottles are produced. These wines has obtained recently the D.O.C.G. appellation, the highest level of the Italian classification of wines.

The “zoning” of Franciacorta appellation of origin territory was financially supported by the Consorzio Tutela Vini Franciacorta. Different landscape units, homogeneous zones as concern pedological, mesoclimate and land morphology traits (Bogoni et al., 1995), and some widely spread soil types were identified in Franciacorta area in 1992, at the beginning of a zoning work based on the study of “genotype x environment interactions” (Panont et al., 1994). Sensory evaluation of wines and statistical analyses of data are still in progress. Preliminary results are summarised in this paper.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

C. A. PANONT (1,2), M. BOGONl (1), A. MONTOLDl (1), A. SCIENZA (1)

(1) Istituto di Coltivazioni Arboree, Université degli Studi di Milano,
Via Celons 2, 20133 Milano, Italy
(2) Consorzio Tutela Vini Franciacorta, Erbusco, Brescia, Italy

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir

The wine: a never-ending source of H2S and methanethiol

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine.

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled.