Terroir 1996 banner
IVES 9 IVES Conference Series 9 Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Abstract

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia. Franciacorta viticultural history, as concern the production of sparkling wines with the Italian version of Champenoise method (Franciacorta “metodo tradizionale”), begun in 1960. Nowadays Franciacorta vineyards cover about 1.000 hectares and about 4 million bottles are produced. These wines has obtained recently the D.O.C.G. appellation, the highest level of the Italian classification of wines.

The “zoning” of Franciacorta appellation of origin territory was financially supported by the Consorzio Tutela Vini Franciacorta. Different landscape units, homogeneous zones as concern pedological, mesoclimate and land morphology traits (Bogoni et al., 1995), and some widely spread soil types were identified in Franciacorta area in 1992, at the beginning of a zoning work based on the study of “genotype x environment interactions” (Panont et al., 1994). Sensory evaluation of wines and statistical analyses of data are still in progress. Preliminary results are summarised in this paper.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

C. A. PANONT (1,2), M. BOGONl (1), A. MONTOLDl (1), A. SCIENZA (1)

(1) Istituto di Coltivazioni Arboree, Université degli Studi di Milano,
Via Celons 2, 20133 Milano, Italy
(2) Consorzio Tutela Vini Franciacorta, Erbusco, Brescia, Italy

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Vine selection in France: An assessment after more than 60 years of work

It was at the end of the second world war that professor Branas laid the foundations of french vine selection. He was also behind the creation of domaine de vassal (1949) and antav (1962), which were to become the bridgeheads of the french strategy for the conservation, selection and multiplication of viticultural diversity. Initially based on visually virus-symptom-free massal selections, with the main aim of providing healthy, clearly-identified plant material, the process evolved as knowledge gained towards clonal selection.

In line monitoring of red wine fermentations using ir spectrospcopy

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013).

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).