Terroir 1996 banner
IVES 9 IVES Conference Series 9 Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Abstract

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia. Franciacorta viticultural history, as concern the production of sparkling wines with the Italian version of Champenoise method (Franciacorta “metodo tradizionale”), begun in 1960. Nowadays Franciacorta vineyards cover about 1.000 hectares and about 4 million bottles are produced. These wines has obtained recently the D.O.C.G. appellation, the highest level of the Italian classification of wines.

The “zoning” of Franciacorta appellation of origin territory was financially supported by the Consorzio Tutela Vini Franciacorta. Different landscape units, homogeneous zones as concern pedological, mesoclimate and land morphology traits (Bogoni et al., 1995), and some widely spread soil types were identified in Franciacorta area in 1992, at the beginning of a zoning work based on the study of “genotype x environment interactions” (Panont et al., 1994). Sensory evaluation of wines and statistical analyses of data are still in progress. Preliminary results are summarised in this paper.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

C. A. PANONT (1,2), M. BOGONl (1), A. MONTOLDl (1), A. SCIENZA (1)

(1) Istituto di Coltivazioni Arboree, Université degli Studi di Milano,
Via Celons 2, 20133 Milano, Italy
(2) Consorzio Tutela Vini Franciacorta, Erbusco, Brescia, Italy

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Developing technologies that help vines survive and produce in quantity and quality within current times is mandatory. In this sense, in the 2021/2022 agricultural harvest, the influence of the foliar application of seaweed – Laminaria japonica was studied, aiming at productivity and quality of the must in the ‘Merlot’ grape. In the city of “Santana do Livramento”, “Rio Grande do Sul” (RS), Brazil; in a 15-year-old commercial vineyard of ‘Merlot’ clone ENTAV-INRA® 347, grafted onto ‘SO4’ rootstock, the following treatments were applied on 6 occasions: No treatment (control) and; Foliar application of Laminaria japonica seaweed (commercial product: Exal (ALAS), 2 kg ha-1).

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.

austrianvineyards.com: online viewer of all designations of Austrian wine

To digitally record and present all the origins of Austrian wines in the same perfect and clear way was the motivation for the Austrian Wine Marketing Board (Austrian Wine) to start with the project in 2018. In June 2021 the results were presented to the public in an online viewer showing all the designations of Austrian wine, available at https://austrianvineyards.com in a largely barrier-free manner. The online viewer provides tailored individual maps fitted to the respective zoom level. The smallest unit of wine-origins in Austria is called Ried and is displayed in a plot-specific manner highlighting areas under vine. Information on the Ried include administrative district, winegrowing municipality, cadastral municipality, large collective vineyard site, specific winegrowing region, generic winegrowing region, winegrowing area and, in many cases, an illustrative picture. Complementary data on the size, elevation (minimum-maximum), orientation (in 8 sectors plus flat) and gradient (minimum, maximum, average) are based on the area under vine according to the EU’s Integrated Administration and Control System. Additional information covers climate data. The diagrams are taken from the monthly breakdown of data in the annals of the Central Institute for Meteorology and Geodynamics, Austria provide a display of values for air temperature, precipitation, and sunshine hours for the reference year and the long-term average. Seasonal aggregated data on temperature, precipitation, and sunshine hours complete the display. Short descriptions with emphasis on geology and soil, field name in historical maps, etymology of the denomination, and main planted variety complements the available information for the main designations in the online viewer. These descriptions are compiled by winegrowers, geologists, historians, and journalists. All the information and data can be extracted to a pdf-file. Printed vineyard maps are also available. Missing content regarding wine origins in Styria will be completed in winter 2021/22.

Caracterización de suelos de la comarca Tacoronte-Acentejo

La comarca Tacoronte-Acentejo, con una extensión cultivada de 2.422 has. concentra un 20% de los viñedos de Canarias.