Terroir 1996 banner
IVES 9 IVES Conference Series 9 Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Abstract

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia. Franciacorta viticultural history, as concern the production of sparkling wines with the Italian version of Champenoise method (Franciacorta “metodo tradizionale”), begun in 1960. Nowadays Franciacorta vineyards cover about 1.000 hectares and about 4 million bottles are produced. These wines has obtained recently the D.O.C.G. appellation, the highest level of the Italian classification of wines.

The “zoning” of Franciacorta appellation of origin territory was financially supported by the Consorzio Tutela Vini Franciacorta. Different landscape units, homogeneous zones as concern pedological, mesoclimate and land morphology traits (Bogoni et al., 1995), and some widely spread soil types were identified in Franciacorta area in 1992, at the beginning of a zoning work based on the study of “genotype x environment interactions” (Panont et al., 1994). Sensory evaluation of wines and statistical analyses of data are still in progress. Preliminary results are summarised in this paper.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

C. A. PANONT (1,2), M. BOGONl (1), A. MONTOLDl (1), A. SCIENZA (1)

(1) Istituto di Coltivazioni Arboree, Université degli Studi di Milano,
Via Celons 2, 20133 Milano, Italy
(2) Consorzio Tutela Vini Franciacorta, Erbusco, Brescia, Italy

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

Copper, iron and zinc in surface layer of Primošten vineyard soils

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks.

Use of minority grape varieties to mitigate climate change and achievement of balanced wines in Castilla y León (Spain)

Castilla y León is the third longest region in the European Union, having more than 85.000 vineyard hectares.

Elementi in traccia e ultratraccia nell’uva: possibili applicazioni ai fini della tracciabilità geografica

Nel presente studio si è ricercata la possibilità di associare l’uva al territorio mediante parametri chimici indipendenti da variabili climatiche ed antropiche.

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.