Terroir 1996 banner
IVES 9 IVES Conference Series 9 Evaluation de différents clones du Chardonnay pendant la maturation dans un terroir viticole du Friuli-Venezia Glulia (Nord-Est de l’Italie)

Evaluation de différents clones du Chardonnay pendant la maturation dans un terroir viticole du Friuli-Venezia Glulia (Nord-Est de l’Italie)

Abstract

La diffusion récente et “explosive” du Chardonnay dans pratiquement toutes les zones de culture viticole du monde a fait penser, à tort, que cette variété s’adapte facilement à toutes les conditions pédo-climatiques ou presque. Cette thèse a été confirmée par la grande faculté d’adaptation dont a fait preuve le vignoble et par la popularité dont jouit le vin auprès des consommateur du monde entier.

Mais, la réalité est bien différente car cette variété n’arrive à exprimer pleinement son potentiel que dans certaines zones bien délimitées (4, 7). Par conséquent, il est nécessaire de réévaluer le vin de Chardonnay en profondeur faute de quoi on assistera à une érosion progressive de son “image commerciale” en raison de la présence massive sur le marché d’une plethore de vins de mauvaise qualité arborant cette dénomination (9).

DOI:

Publication date: March 28, 2022

Issue: Terroir 1996

Type: Poster

Authors

E. CELOTTl (1), F. BATTISTUTTA (1), G. COLUGNATI (2), F BREGANT (2), R. ZIRONI (1)

(1) Dipartimento di Scienze degli alimenti – Via Marangoni97, 33100 Udine, Italia
(2) ERSA – Centro Pilota perla Vitivinicoltura – Via 3a armata 69, 34070 Gorizia, Italia

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

The choice of an adequate rootstock is a key tool to improve the performance of grapevine varieties in different ‘terroirs’, as rootstocks confer adaptation to soil characteristics

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.