Macrowine 2021
IVES 9 IVES Conference Series 9 Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

Abstract

AIM: Grape flavanols are involved in wine quality markers such as in-mouth sensations and colour stability. In particular, seed flavanols are characterized by low molecular weight and high galloylation ratio, which are correlated respectively with bitterness and astringency. Their release during maceration is derived from the seed hydration and the ethanol-driven disassembly of cell walls that is promoted by maceration time. In this study, acoustic and mechanical parameters were tested to investigate the effect of maceration length and ethanol content on seed flavanols extraction. The magnitude of the changes observed in seeds hardness in the different maceration conditions was evaluated in the attempt to establish correlations with the extracted compounds.

METHODS: Pinot noir seeds were macerated in a wine-like solution (pH 3.40, 5 g/L tartaric acid) with different ethanol content (0, 5, 10, 15 and increasing addition up to 15% v/v). After 3, 7, and 10 days, total polyphenols (A280), condensed tannins (methylcellulose assay), flavanol composition as mean degree of polymerization (mDP), and monomeric content by HPLC were determined in the resulting solutions. Mechanical and acoustic parameters of macerated seeds were evaluated through compression test by instrumental texture analysis.

RESULTS: Seed tannins extraction was influenced by both ethanol and maceration time, in different extent depending on the specific compound. In all macerations, an initial seed deformation together with a loss of elasticity was reported. As well, seed hardness (as seed break force, N) increased in all macerations except for 15% ethanol samples that showed a significant decrease. In accordance, some acoustic parameters (as average acoustic energy, dB) increased significantly during maceration, and this last parameter was positively correlated with total polyphenols and condensed tannins extractions.

CONCLUSIONS:

Initial ethanol content and maceration length influenced flavanols richness and composition in the maceration extract. However, limited differences in both phenolic composition and texture parameters were found between the samples with no ethanol content and gradually-increasing alcohol strength

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Alessandra Paissoni

University of Torino, Italy,Susana RÍO SEGADE, University of Torino, Italy Luca ROLLE, University of Torino, Italy Simone GIACOSA, University of Torino, Italy

Contact the author

Keywords

grape seeds, tannins, maceration, texture analysis, mechanical-acoustic properties

Citation

Related articles…

Evaluation of uhph treatment as an alternative to heat treatment prior to the use of proteolytic enzymes on must to achieve protein stability in wine

There are currently enzyme preparations on the market with specific protease activities capable of degrading unstable must proteins and preventing turbidity in white and rosé wines. The main drawback is the need to heat the must at 75ºc for 1-2 minutes to denature the proteins and facilitate enzyme action.

Application of cyclic voltammetry to the classification of enological tannins in relationship to oxygen consumption rate and botanical origin 

Enological tannins are a diversified group of winemaking products that vary in several aspects such as chemical composition, botanical origin, and production method. In consideration of their richness in phenolic compounds, one of their main application in vinification is related to their antioxidant capacity, in particular their ability to consume oxygen during red wine maturation.

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.

Training system and its influence on iso-anisohydric behavior of cv. Syrah

Water use efficiency is one of the most valued objectives in vine growing in mediterranean climates (de la fuente et al., 2015). Due to this, the grape growers provide different adaptation strategies according to their efficient consumption against the presumable water deficit generated under these environmental conditions. The use of non-positioned shoot systems (like sprawl, bush, etc.) Can help to achieve this objective.

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.