An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest. 

Authors: Cécile Laurent1,2,3, Gilles Le Moguédec4, James Taylor3, Thibaut Scholasch1, Bruno Tisseyre3 and Aurélie Metay2

1Fruition Sciences, 34000 Montpellier, France
2ABSYS, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
3ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
4AMAP, Univ. Montpellier, INRAE, Cirad BNRS, IRD, Montpellier, France

Email: cecile@fruitionsciences.com

Keywords: extended growing degree days (eGDD), bayesian functional linear regression with sparse steps functions (BLiSS), yield development, operational conditions, weather

Related Posts

Share via
Copy link
Powered by Social Snap