terclim by ICS banner
IVES 9 IVES Conference Series 9 Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Abstract

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status. 

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date). 

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Juan Fernández-Novales, Ignacio Barrio and María Paz Diago

Institute of Grapevine and Wine Sciences (University of La Rioja, Consejo Superior de  Investigaciones Científicas, Gobierno de La Rioja), Logroño, Spain 

Contact the author

Keywords

water stress, NIR spectroscopy, precision viticulture, stem water potential, proximal sensing

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Impact of yeast strains on wine profiles of nine PIWIs: focus on volatile thiols

Disease resistant grapevine varieties (PIWI) are increasingly important for sustainable wine production, yet the impact of different yeasts on their wine profiles remains poorly studied. In this study, nine white interspecies varieties (i.e., caladris blanc, fleurtai, hibernal, johanniter, muscaris, sauvignon kretos, soreli, souvignier gris, and voltis) grown at the faculty of agriculture, university of Zagreb (Croatia) were vinified with three different saccharomyces cerevisiae yeasts (control strain, zymaflore x5, and zymaflore xarom).

LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

In the Bordeaux vineyards, press red wine represents about 15% of the volume of wines. Valuing this large volume of press wine is necessary from an economic point of view, of course, but also because of their organoleptic contribution to the blend. Nevertheless, there is a lack of recent knowledge on the composition of press wines. This work aims to establish an initial assessment of their composition (aromatic and polyphenolic) and to set up hypothesis on to the links with their sensorial identity.

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.

Les terroirs viticoles ont une histoire

The historian starts from a scientific, rigorous and recent definition of the wine-growing region. “A viticultural terroir is made up of several homogeneous units: geological and pedological elements (texture,
grain size, thickness, mineralogical nature, chemical components), geomorphological (altitude, slope, exposure), climatological (rainfall, temperature, insolation)”. Absent from this definition, the man is fortunately reintroduced a little further. By associating viticulture and winemaking, it forms a “couple” with the terroir and this couple.

Management of varietal thiols in white and rosé wines using biotechnical tools

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines