terclim by ICS banner
IVES 9 IVES Conference Series 9 Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Abstract

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status. 

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date). 

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Juan Fernández-Novales, Ignacio Barrio and María Paz Diago

Institute of Grapevine and Wine Sciences (University of La Rioja, Consejo Superior de  Investigaciones Científicas, Gobierno de La Rioja), Logroño, Spain 

Contact the author

Keywords

water stress, NIR spectroscopy, precision viticulture, stem water potential, proximal sensing

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a
territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural
environment and the action of the human, which modulates the territory to give the different wine
landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

A worldwide perspective on viticultural zoning

Cet article répertorie les intérêts et problèmes du zonage viticole dans une perspective mondiale. Le zonage est un besoin pour chacun des vignobles mondiaux où il correspond à des applications, définitions et approches variées. Les objectifs du zonage changent de concert avec les besoins du marché mondial du vin, qui ne cesse de croître.

DOSAVIÑA® A new app for a more sustainable use of plant protection products in vineyard

Aims: DOSAVIÑA® was developed with the aim of helping farmers to determine optimal volume rates for spray applications in vineyards. The final developed tool is a good example of bringing research to end users.

Significance of factors making Riesling an iconic grape variety

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.  

Développement du concept d’Appellation d’Origine Contrôlée et d’Indication Géographique

L’identification des produits par le nom de la ville, de la région, de la province d’origine d’un produit tend aujourd’hui à se développer partout dans le monde et notamment dans le secteur agro-alimentaire, mais aussi dans les secteurs des produits artisanaux.