terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

Abstract

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

The extractions rates showed huge differences between the non acylated and the para-coumaroylated anthocyanins. The former were much easier to extract than the latter. Particularily in model solutions, the extraction of p-coumaroylated anthocyanins was almost negligible. The extraction rate of tannins was between those of the two anthocyanin families. Moreover, in wines as in model solutions, the final concentrations in tannins, non acylated and p-coumaroylated anthocyanins showed correlations that did not exist in the berry compositions, suggesting a similar mechanism of extraction associating those three families of polyphenols. According to the CoMPPs, these mechanisms would mainly rely on polysaccharidic families, namely hemicelluloses, homogalacturonans, rhamnogalacturonans, and extensins.

The major role of the cell wall polysaccharides in the extraction of tannins and anthocyanins was confirmed. CoMPPs revealed a much more complex mechanism than expected, e.g. homogalacturonans in skins and pulps associated to an increase and a decrease of the polyphenols extractibilities, respectively. Moreover, our study changed the standpoint on cell wall polysaccharides. Up to now, they were considered as detrimental since they bind polyphenols, and were thus expected to increase losses. But they also release soluble polysaccharides (PRAGs) which contribute positively to the colloidal stability of wines.

1. Boulet, J.C., Abi-Habib, E., Carrillo, S., Roi, S., Veran, F., Verbaere, A., Meudec, E., Rattier, A., Ducasse, M.A., Jorgensen, B. Hansen, J., Le Gall, S., Poncet-Legrand, C., Cheynier, V., Doco, T., Vernhet, A. Focus on the relationships between the cell wall composition in the extraction of anthocyanins and tannins from grape berries. Food Chemistry, 406, 2023. https://doi.org/10.1016/j.foodchem.2022.135023

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Jean-Claude Boulet1,2, Elissa Abi-Habib¹, Stéphanie Carrillo¹, Stéphanie Roi¹, Frédéric Veran¹, Arnaud Verbaere1,2, Emmanuelle Meudec1,2, Anais Rattiera², Marie-Agnès Ducasse³, Bodil, Jorgensen⁴, Jeanett Hansen⁴, Sophie Le Gall⁵,⁶, Céline Poncet-Legrand¹, Véronique Cheynier1,2, Thierry Doco¹, Aude Vernhet¹

1. Univ. Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
2. INRAE, PROBE research infrastructure, PFP polyphenols analysis facility, 34070 Montpellier, France
3. IFV, experimental unit of Pech Rouge, 11430 Gruissan, France
4. Department of Plant and Environmental Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
5. INRAE, UR BIA, 44316 Nantes, France
6. INRAE, PROBE research infrastructure, BIBS biopolymers analysis facility, 44316 Nantes, France

Contact the author*

Keywords

Yeast, New Zealand Pinot noir, Polysaccharides, Chemical profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.