terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Abstract

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Haitham Ezzy1,2, Anna Brook2, Eugenia Monaco1, Maurizio Buonanno1, Rossella Albrizio1, Pasquale Giorio1, Arturo Erbaggio1, Carmen Arena3, Francesca Petracca4, Chiara Cirillo4, Veronica De Micco4 and Antonello Bonfante1

1National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forest Systems, ISAFOM, Portici, Italy 
2Spectroscopy & Remote Sensing Laboratory, Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Israel 
3Department of Biology, University of Naples Federico II, Naples, Italy 
4Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy 

Contact the author

Keywords

precision agriculture, vineyard monitoring, spectral measurements, CNN applied to viticulture, UAS

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.

Changes in grape-associated microbiome as a consequence of post-harvest withering

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1].

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.

Protection juridique du terroir viticole en France

The diversity of potential sources of damage to the terroir of an appellation (physical, aesthetic, ecological damage, damage to the image, to collective representation or even, in a broad concept which will not be retained here, to the geographical name identifying the terroir) is accompanied by a fragmentation of the legal sources allowing its protection.