terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Abstract

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Haitham Ezzy1,2, Anna Brook2, Eugenia Monaco1, Maurizio Buonanno1, Rossella Albrizio1, Pasquale Giorio1, Arturo Erbaggio1, Carmen Arena3, Francesca Petracca4, Chiara Cirillo4, Veronica De Micco4 and Antonello Bonfante1

1National Research Council of Italy (CNR), Institute for Mediterranean Agricultural and Forest Systems, ISAFOM, Portici, Italy 
2Spectroscopy & Remote Sensing Laboratory, Department of Geography and Environmental Studies, University of Haifa, Mount Carmel, Israel 
3Department of Biology, University of Naples Federico II, Naples, Italy 
4Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy 

Contact the author

Keywords

precision agriculture, vineyard monitoring, spectral measurements, CNN applied to viticulture, UAS

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Regulated deficit irrigation and crop load interaction effects on grape heterogeneity

Aim: To investigate the interaction effects between irrigation and crop load and the resulting impact on grape heterogeneity within a Geographical Indication in South Australia. 

Methods and Results: Cabernet Sauvignon grapes were sampled at the time of harvest from the Coonawarra

Natural sparkling wine pétillant naturel: technological features and sensory profile

The article presents the results of a study on the technological features of producing sparkling wines of the Pétillant Naturel (Pet-Nat) type, made using the ancestral method from the Muscat Ottonel and Pinot Noir grape varieties.

Spatial Analysis of Climate in Winegrape Growing Regions in Portugal

Spatial climate data at a 1 km resolution has allowed for a comprehensive mapping and assessment of viticulture DOs regions in Portugal. Overall the 50 regions and sub-regions in Portugal range

Yield characteristics and environmental effects of plastic covers on table grape with relation to chemical, physical, radiometric and satellite analyses

Climate change poses a significant challenge for global viticulture, with growing evidence of its negative impact on thermal and hydric regimes, both of which are essential for the development of table grapes.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.