terclim by ICS banner
IVES 9 IVES Conference Series 9 Mapping and tracking canopy size with VitiCanopy

Mapping and tracking canopy size with VitiCanopy

Abstract

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Robert De Bei and Cassandra Collins

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, Glen Osmond, Australia

Contact the author

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Modélisation du régime thermique des sols de vignoble du Val de Loire : relations avec des variables utilisables pour la caractérisation des terroirs

Temperature has a decisive influence on the growth and development of plants (Carbonneau et al., 1992). In particular, in the case of the vine, the temperature is an omnipresent variable in the climatic indices (Huglin, 1986). For reasons of convenience, these indices use the temperature of the air measured under shelter in a meteorological station, making the implicit hypothesis of a concordance between this temperature and that of the sites of perception of the thermal stimulus by the plant. However, development may be more dependent on soil temperature than air temperature (Kliewer, 1975). Morlat (1989) thus verified that the variability in the precocity of the vine, positively correlated with the quality of the harvest and of the wine in the Loire Valley, was mainly explained by differences in temperature of the root zones.

Reconnaissance des vins de terroir par les consommateurs

Approaching the notion of terroir wines at the level of consumption poses a problem due to the absence of a regulatory definition of the term terroir, which is not taken up either at Community level or at national level (the Consumer Code in particular does not define not the land). However, whatever definition is adopted for the terroir, we can retain at the consumer level an identification of the terroir through the different geographical mentions appearing on the labels or on the shelves of the wine shelf.

The geological and geomorphological events that determine the soil functional characters of a terroir

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.