terclim by ICS banner
IVES 9 IVES Conference Series 9 Mapping and tracking canopy size with VitiCanopy

Mapping and tracking canopy size with VitiCanopy

Abstract

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Robert De Bei and Cassandra Collins

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, Glen Osmond, Australia

Contact the author

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

“Terroir” studies in the Côtes du Rhône controlled appellation: from zoning to application

This work gives a summary of the most important programmes about viticultural « terroirs », developed on the « Côtes du Rhône » controlled appellation area for about twenty years.

Landscape qualities and keys for action

Parallèlement à la connaissance des aptitudes viticoles, le terroir témoigne d’une identité locale, d’une spécificité des conditions de productions et d’une originalité des lieux.

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

Using open source software in viticultural research

Many high quality Open Source scientific applications have been available for a long time. Some of them have proved to be particularly useful for carrying out the usual activities involved in viticultural research projects, such as statistical analyses (including spatial analyses), GIS work, database management (possibly integrated with statistical and spatial analysis) and even “low-level” often highly time-consuming activities (e.g. repetitive task on text files).