terclim by ICS banner
IVES 9 IVES Conference Series 9 Mapping and tracking canopy size with VitiCanopy

Mapping and tracking canopy size with VitiCanopy

Abstract

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Robert De Bei and Cassandra Collins

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, Glen Osmond, Australia

Contact the author

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Shoot heterogeneity effects in a Shiraz/R99 vineyard

Nous avons fait des recherches sur l’effet de l’hétérogénéité des bourgeons sur les paramètres de la croissance végétative et reproductive, la physiologie de la vigne et la composition du raisin dans une parcelle de Shiraz/Richter 99. Des bourgeons sous-développés (typiquement plus courts et moins mûrs à la véraison) ont été comparés avec

Effect of topography on vine evapotranspiration and water status in hillside vineyards

Many winegrape regions have hillside vineyards, where vine water use is affected by vine age, density and health, canopy size, row orientation, irrigation practices