terclim by ICS banner
IVES 9 IVES Conference Series 9 Variations of soil attributes in vineyards influence their reflectance spectra

Variations of soil attributes in vineyards influence their reflectance spectra

Abstract

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Adriane B. Thum1,2, Diniz C. Arruda2 and Jorge R. Ducati2

1Escola Politécnica, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
2Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Contact the author

Keywords

topsoil reflectance, spectroradiometry, Vis-NIR spectroscopy, wine terroirs

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Using ΔC13 to assess viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions in Chianti

A two years trial was carried out in Chianti (Central Italy) to assess at the detailed scale the viticultural and oenological suitability for Sangiovese of different pedoclimatic conditions, by means of the ΔC13 measured in the must sugars

Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

To meet the demand of assessment tool of water managers we adapted to the vine production the INDIGO® method to developed initially for arable farming at the field scale.

High-altitude vineyards under extreme conditions in the PIWI context of cultivation: economic and marketing evidence from an exploratory study in Northern Italy

Viticulture has spread to unexpected locations, such as high-altitude terrain. Among these, high-altitude viticulture has captured considerable attention, not only for the uniqueness of its products and landscapes but also because it offers an effective response to climate changes
The aim of this study is to analyse and compare wineries that used Piwi varieties (acronym for the German Pilzwiderstandfähig, i.e., cryptogame-resistant) at high altitudes (between 500 and 920 m a.s.l.) with the traditional non-mountainous viticulture model.

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

Untangle berry shrivel environmental risk factors and quantify symptoms with AI – GeomAbs meets BAISIQ

Berry Shrivel (BS, Traubenwelke) is a sugar accumulation disorder of grapevine of unknown causes, having a great negative impact on grape quality and incalculable risks for yield losses, and for which no reliable curative practices are available.