terclim by ICS banner
IVES 9 IVES Conference Series 9 Variations of soil attributes in vineyards influence their reflectance spectra

Variations of soil attributes in vineyards influence their reflectance spectra

Abstract

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Adriane B. Thum1,2, Diniz C. Arruda2 and Jorge R. Ducati2

1Escola Politécnica, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
2Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Contact the author

Keywords

topsoil reflectance, spectroradiometry, Vis-NIR spectroscopy, wine terroirs

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Novel biorefinery step for grape marc valorisation: polysaccharides extraction by subcritical water

The exploitation of food by-products has garnered significant attention over the past few decades, particularly within the framework of the European Green Deal.

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

The social construction of wine-growing areas: the “Graves de Bordeaux”

«Graves de Bordeaux» est une des rares appellations à porter le nom d’un terroir, au sens agronomique du terme. Et ce territoire vitivinicole présente une relative unité géographique, de Langon à Bordeaux sur la rive gauche de la Garonne.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.