terclim by ICS banner
IVES 9 IVES Conference Series 9 Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Abstract

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Lauren Marigliano1, R. Yu1, N. Torres1, M. Battany2 and S. Kaan Kurtural1

1Department of Viticulture and Enology, University of California, Davis, USA 
2University of California Cooperative Extension, San Luis Obispo, USA

Contact the author

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Identifying research opportunities at Douro Demarcated Region

The Douro Demarcated Region, in Northern Portugal, offers outstanding wines with unique characteristics. Due to the today’s globalized marketplace, local producers often need to further develop their cultivation techniques to remain competitive. The Association of Viticultural Development in the Douro Valley (ADVID) works as a unit of experimentation, offering services and training to meet the demands of the Douro’s vitiviniculturists.

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

La protection des terroirs viticoles dans l’AOC Côtes du Rhône (France)

[English version below]

Les terroirs viticoles, et plus particulièrement ceux des vignobles AOC, sont aujourd’hui menacés par de multiples agressions. Ces territoires sont non seulement l’outil de production

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Studying the effect of the addition of reduced glutathione (GSH) and/or gallotannins at bottling to limit the use of SO2 in white winemaking.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.