terclim by ICS banner
IVES 9 IVES Conference Series 9 Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Abstract

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Merek Kesser, Willem Joubert, Timothy Cavagnaro, Roberta De Bei and Cassandra Collins

School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, Australia

Contact the author

Keywords

alternative under-vine management, cultivation, grapevine production, soil physiochemical properties, spontaneous vegetation

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

The Fontevraud charter in favour of the viticultural landscapes

The viticultural regions of the world have the advantage of a remarkable diversity of landscapes which are the reflection of the winegrowers’ capacity to adapt to the different geomorphological and climatic specificities of the terroirs, more generally speaking, this aesthetic and heritage aspect of the terroir is also part and parcel of the notion of sustainable viticulture.

Pioneering dynamic AgriVoltaics in viticulture: enhancing grapevine productivity, wine quality and climate protection through agronomical steering in a large-scale field study

Context and purpose of the study. Climate change threatens traditional winegrowing regions, with about 90% of areas like southern France at risk by the end of the century due to heatwaves and droughts.

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Relationship between soil and grapevine variety in the wineyard of Jura: example for the “Trousseau” variety from the “Terroir” of Montigny-Lès-Arsures (France)

Seven plots located in the commune of Montigny-lès-Arsures (Jura, 39), planted with grapevine varieties Trousseau and Savagnin, were chosen for a study of soil pits and a distribution of major and trace chemical elements in soils and wines. It was shown that the mineral matrix of the soil reflects the geological substratum and the sub-surface alteration process, while the organic soil matrix depends on agro-viticultural practices.

Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.