terclim by ICS banner
IVES 9 IVES Conference Series 9 Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

Abstract

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Esther Hernández-Montes1, Belén Padilla2, Guillem Puigserver1 and Josefina Bota1

1University of Balearic Islands, Palma, Mallorca, Spain
2Bodega Ribas, Consell, Mallorca, Spain

Contact the author

Keywords

shading, defoliation, grape ripening, irrigation

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Un “GIS” agronomico per l’area a DOC dei Colli Euganei

L’area a “Denominazione di Origine Controllata Colli Euganei”, riconosciuta con Dpr 13 agosto 1969, è situata a sud-ovest della Provincia di Padova (fig. 1) ed è costituita da un sis­tema collinare di nuclei vulcanici evolutosi morfologicamente.

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Free amino acid concentrations in must of 7 Vitis vinifera cultivars (Cabernet Franc, Syrah, Merlot, Montepulciano, Sangiovese, Cesanese d’Affile, Carmenere) grown in the Latium region (Italy) were monitored from 2003 to 2005. The cultivars were located in a homogeneous soil and climatic zone and with the same training system (Cordon Spur).

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Biochemical responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

The South African Table grape industry has to expand to new markets with high quality niche products, but limited water availability threatens sustainable production. To overcome this challenge and to obtain high-quality products for the new markets, require constant technological advancement. Currently, limited available scientific information about growth balances and physiology and especially grape quality parameters, hinders technological advancement and thus efficient regulatory management of the morphological, chemical, and pathological status of table grapes, especially in response to abiotic factors.