terclim by ICS banner
IVES 9 IVES Conference Series 9 Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Abstract

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Bhaskar Bondada

Wine Science Center, Washington State University Tri-Cities, Richland, USA

Contact the author

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Distribution and associated symptoms of grapevine trunk pathogens in South Africa

In recent studies, several grapevine trunk pathogen complexes have been identified from grapevines in South Africa. These pathogens include Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium sp., Botryosphaeria sp. and Phomopsis sp. Trunk diseases lead to reduced yield, and grape quality as well as a decline

Does treatment of grape juice with aspergillopepsin-i influence wine aroma?

Acid aspergillopepsins-i (ap-i) have been suggested for use in winemaking due to their ability to degrade proteins, which reduces haze formation and the necessity for bentonite to achieve protein stability. These endopeptidases cleave non-terminal amino acid bonds of proteins, resulting in their degradation.

“Terroir” and “Great” zonation study regarding Istrian Malvasia, Porec Rosy Muscat and Momjan White Muscat (HR)

In a so called “Great” zonation, “terroir” study is of great importance also in aim of the best exploiting. In the present paper are shown results from the research in Istria with the aim of individuating the influence of soil

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.

High resolution climate spatial analysis of European winegrowing regions

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties.