terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Abstract

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Eva P. Pérez-Álvarez1,2, Diego Intrigliolo1, Rebeca Murillo-Peña2, Pilar Rubio-Bretón2, Teresa Garde-Cerdán2

1Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
2Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Influence of irrigation on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Cette étude a pour but d’évaluer la modification de l’état hydrique (potentiel hydrique foliaire), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales, comme conséquence de l’application d’une irrigation modérée. Pour développer l’essai on a appliqué les suivantes

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.