Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Abstract

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Methods and Results: 100 vineyard plots representing the typical percentage distribution of geographical and viticulture impact factors on Chilean Cabernet-Sauvignon were monitored across two seasons, 2018 and 2019. Chemical analysis of grapes and wines included the quantification of phenolic compounds by liquid chromatography and UV-vis spectral measurements, aroma compounds by gas chromatography mass spectrometry (GC/MS), and maturity parameters. Spearman correlation and Principal component analysis (PCA) identified correlations of several non-volatile and volatile compounds with quality, mainly by means of their anthocyanins, flavonols, flavan‑3‑ols, total tannins and hydroxycinnamic acids. Furthermore by trans-2-hexenol, trans-3-hexenol, hexanal, 2-isobutyl-3-methoxypyrazine (IBMP), yeast assimilable nitrogen (YAN), total soluble solids and acidity. Experimental winemaking of 600 kg per plot followed a standardized procedure, and the wines were analyzed by an expert quality rating. A sensory quality profiling for the wines was performed through a Napping Ultra Flash Profile (UFP). It revealed the distinction of three different quality levels by mainly mouthfeel attributes, and fruity and green aromas. However, neither the observed correlations of chemical analysis and sensory quality ratings, nor origin or viticulture treatment could fully explain quality. Different clustering methods, namely k-means, k-medioids and spectral clustering were evaluated in order to find categories given by the chemical analysis data itself as unsupervised machine learning. Spectral clustering led to optimum results, and independently of sample origin and viticulture traits, quality ratings were characterized to be significantly different across the clusters allowing their interpretation as quality categories. 

Conclusions: 

Chilean Cabernet-Sauvignon quality is associated with chemical quality markers known for this variety in Australia and California, including phenolic compounds, C6 alcohols and aldehydes, IBMP, maturity parameters and YAN. However, evaluation of sensory quality is fairly subjective and viticulture treatments in practical application contain interdependency, therefore it is challenging to establish supervised models involving this data. The application of unsupervised spectral clustering is proposed as an objective quality classification approach, which can be trained using supervised models for predictive purposes.

Significance and Impact of the Study: There is a high industrial need for objective quality classification. For the first time chemical quality markers for Chilean Cabernet-Sauvignon were determined, and an unsupervised machine learning approach based on these markers could be proposed for objective quality classification.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Doreen Schober1*, Martin Legues1,2, Hugo Guidez3, Jose Carlos Caris Maldonado1, Sebastian Vargas1,  Alvaro Gonzalez Rojas1

1Center for Research and Innovation (CRI), Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile
2Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
3Institut National Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Agrocampus Ouest Campus d´Angers, France

Contact the author

Keywords

Cabernet-Sauvignon, spectral clustering, quality, terroir, vineyard management

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.

Variety and climatic effects on quality scores in the Western US winegrowing regions

Wine quality is strongly linked to climate. Quality scores are often driven by climate variation across different winegrowing regions and years, but also influenced by other aspects of terroir, including variety. While recent work has looked at the relationship between quality scores and climate across many European regions, less work has examined New World winegrowing regions. Here we used scores from three major rating systems (Wine Advocate, Wine Enthusiast and Wine Spectator) combined with daily climate and phenology data to understand what drives variation across wine quality scores in major regions of the Western US, including regions in California, Oregon and Washington. We examined effects of variety, region, and in what phenological period climate was most predictive of quality. As in other studies, we found climate, based mainly on growing degree day (GDD) models, was generally associated with quality—with higher GDD associated with higher scores—but variety and region also had strong effects. Effects of region were generally stronger than variety. Certain varieties received the highest scores in only some areas, while other varieties (e.g., Merlot) generally scored lower across regions. Across phenological stages, GDD during budbreak was often most strongly associated with quality. Our results support other studies that warmer periods generally drive high quality wines, but highlight how much region and variety drive variation in scores outside of climate.

Aromatic profile of Savatiano Greek Grape Variety as affected by various terroirs in the PGI zone of Attica.

Regionality, frequently called terroir, is often used to market wines from different locations. Savatiano (Vitis Vinifera L.), is the dominant indigenous variety of the Mesogeia – Attiki region, reaching a percentage of 70% of the total vine cultivation, and being the most widely planted variety in Greece. In this context, this research focuses on the evaluation of the impact of different terroirs within the PGI Attiki zone on the aromatic profile of Savatiano.

Implications of the respect of pruning principles on grapevine development

After some decades sunk into oblivion, pruning has recently recovered the focus of grape growers and viticulturists worldwide. Attention is now being paid to the respect the sap flow continuity and to pruning wounds, as they may affect the general performance and longevity of the plant. The longevity and profitability are strongly affected by the increasing incidence of grapevine wood diseases (GWD), intensified by the omission of good pruning practices and leading to an increasingly aggressive pruning. The purpose of this study is to provide an objective evaluation of the short- and mid-term implications of different pruning practices that differ in the degree of observation several of pruning principles.