terclim by ICS banner
IVES 9 IVES Conference Series 9 Modeling island and coastal vineyards potential in the context of climate change

Modeling island and coastal vineyards potential in the context of climate change

Abstract

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Jeanne Thibault1, Hervé Quénol2 and Cyril Tissot3

 

1,3UMR 6554 LETG Brest, Institut Universitaire Européen de la Mer, Plouzané, France
2UMR 6554 LETG Rennes, Université Rennes 2, Rennes, France

Contact the author

Keywords

climate change, islands, modeling, optimization, vineyards

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management.

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

Settling precocity and growth kinetics of the primary leaf area: two indicative parameters of grapevine behaviour

Le comportement de la vigne en terme de fonctionnement thermique et hydrique, influe de manière directe sur la qualité des baies de raisin. L’effet du terroir peut être perçu à travers l’étude de paramètres tels que la précocité, la mise en place de la surface foliaire ou la vigueur. Une expérimentation a été conduite en Val de Loire sur le cépage chenin dans le but de mieux comprendre le rôle des variables liées au terroir sur la croissance et le développement de la vigne et in fine sur la qualité des baies.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Highlighting the several chemical situations of Dimethyl sulfide in wine

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2