terclim by ICS banner
IVES 9 IVES Conference Series 9 Current climate change in the Oplenac wine-growing district (Serbia)

Current climate change in the Oplenac wine-growing district (Serbia)

Abstract

Serbian autochthonous vine varieties Smederevka (for white wines) and Prokupac (for rosé and red wines) are the primary representatives of typical characteristics of wines and terroir of numerous wine-growing areas in Serbia. In the past, these varieties were the leading vine varieties, however, as the result of globalization of winemaking and the trend of consumption of wines from widely prevalent vine varieties, they were replaced by introduced international varieties. Smederevka and Prokupac vine varieties are characterized by later time of grape ripening, and relative sensitivity to low temperatures. Climate conditions can be a restrictive factor for production of high-quality grapes and wine and for the spatial spreading of these varieties in hilly continental wine-growing areas.
This paper focuses on the spatial analysis of changes of main climate parameters, in particular, analysis of viticultural bioclimatic indices that were determined for the purposes of viticulture zoning of wine-growing areas in the period 1961-2010, and those same parameters determined for the current, that is, referential climate period (1988-2017). Results of the research, that is, analysis of climate changes indicate that the majority of examined climate parameters in the Oplenac wine-growing district improved from the perspective of Smederevka and Prokupac vine varieties. These studies of climate conditions indicate that changes of analyzed climate parameters, that is, bioclimatic indices will be favorable for cultivation of varieties with later grape ripening times and those more sensitive to low temperatures, such as the autochthonous vine varieties Smederevka and Prokupac, therefore, it is recommended to producers to more actively plant vineyards with these varieties in the territory of the Oplenac wine-growing district.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Darko Jaksic1, Mirjam Vujadinovic Mandic2, Ana Vukovic Vimic2, Veljko Perovic 3, Jordana Ninkov 4, Pierfederico La Notte5 and Ivan Bradic6

1Centre for Viticulture and Oenology Niš, Belgrade, Serbia
2Department of Viticulture, Institute of Horticulture, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
3Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
4Laboratory for Soil and Agroecology, Institute of Filed and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
5Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante (IPSP) Bari, Italy 
6Centre for Viticulture and Oenology Niš, Aleksandrovac, Serbia

Keywords

climate changes, Smederevka and Prokupac vine varieties, Oplenac wine-growing district

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

A microwave digestion ICP-MS method for grapevine bark elemental profiling

A rapid and reproducible microwave (MW)-assisted acid digestion protocol was developed to determine the elemental composition of grapevine bark samples using ICP-MS.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Consumer perception of wine bottle weight and its impact on sustainability

In the context of sustainability, this study evaluated consumer perception regarding the impact of glass bottle weight on wine valuation.

A multivariate clustering approach for a gis based territorial characterization of the montepulciano d’abruzzo DOCG “Colline Teramane”

The aim of the project was to characterize the Premium Denomination of Guaranteed Origin (DOCG) “Colline Teramane” wine-growing region and to delineate and define homogeneous zones (terroir units) within it, by applying a multivariate clustering approach combined with geomatics.