terclim by ICS banner
IVES 9 IVES Conference Series 9 Soil, vine, climate change – what is observed – what is expected

Soil, vine, climate change – what is observed – what is expected

Abstract

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come. 
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Hans R. Schultz

Hochschule Geisenheim University, Geisenheim, Germany 

Contact the author

Keywords

regional climate evolution, soil temperature, water balance, soil carbon, greenhouse gas emissions

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Establishment of a geodatabase ‘for the characterization of the viticultural “terroirs” of “canton de Vaud” (Switzerland)

La caractérisation objective des terroirs viticoles est nécessaire pour mieux comprendre les relations existantes entre les sols, la plante et la qualité de la production vinicole. Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un géorépertoire pédologique et agronomique a été conçu et réalisé.

Study of intramolecular distribution of hydrogen isotopes in ethanol depending on deuterium content of water and the origin of carbohydrates

The paper presents the results of consistently developing studies carried out in 2022-2024 on the distribution of deuterium 2H(D) in intracellular water of grapes and wine products, taking into account the influence of natural, climatic and technogenic factors using high-resolution quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR.

Enhancing sustainability in viticulture through digital technologies: A case study from Smyrnakis winery

The integration of digital technologies in vineyard management offers substantial opportunities for enhancing sustainability, efficiency, and grape quality.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1].