Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Detection of spider mite using artificial intelligence in digital viticulture

Detection of spider mite using artificial intelligence in digital viticulture

Abstract

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Methods and Results: RGB images of grapevine canopy attacked by the spider mite (Eotetranychus carpini Oud) were manually taken in commercial vineyard (Etxano, Basque Country, Spain) under natural day light conditions. Leaf segmentation in images was performed based on computer vision techniques, isolating target leaves with spider mite visual symptoms from the vineyard canopy. HSV colour space was used to consider colour variations representing symptoms on the leaves, separating these values from those of saturation and brightness of the image. Spider mite detection was done using Convolutional Neural Networks (CNN) models with an artificially augmented dataset for the classification of leaves with this pest symptoms. An accuracy surpassing 75% was obtained using a hold-out validation.

Conclusions: 

High accuracy proves the effectiveness of the trained model in the classification of grapevine leaves. Computer vision techniques were useful to image classification on the relevant pixels. Additionally, deep learning techniques provided a robust model to find complex features of spider mite visual symptoms.

Significance and Impact of the Study: Non-invasive technology and artificial intelligence shown promising results in the automatic detection of pests in commercial vineyards.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Inés Hernández1, Salvador Gutiérrez2, Sara Ceballos1, Ignacio Barrio1, Fernando Palacios1, Ana M. Diez-Navajas3, Javier Tardáguila1*

1Televitis Research Group. University of La Rioja, 26007 Logroño, Spain 
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Spain 
3Department of Plant Production and Protection, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 01192 Arkaute, Spain

Contact the author

Keywords

Deep learning, computer vision, pests, grapevine, crop protection

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

High resolution climatic zoning of the Portuguese viticultural regions

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI).

Il piano regolatore delle citta’ del vino

Obiettivo generale di questo documenta è fornire un metodo di pianificazione che superi l’organizzazione delle aree rurali, ed in particolare vitate, finalizzata unicamente all’ot­timizzazione economico produttiva delle aziende, verso una pianificazione integrata degli spazi aperti.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.