terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

Abstract

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Mark Gowdy, Bruno Suter, Philippe Pieri, Elisa Marguerit, Agnès Destrac-Irvine,  Gregory Gambetta and Cornelis van Leeuwen

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

climate change, drought stress, vineyard water use models, Vitis vinifera

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

The “GuIturnio dei Colli Piacentini” V.Q.PR.D. results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of the Piacenza district, identified by the DM 31-07-93 art. 3.
The present work concerns the “zonation” of this area, constituted by 3 valleys Tidone (A), Nure (B) and Arda (C )

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality.