terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

Abstract

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Mark Gowdy, Bruno Suter, Philippe Pieri, Elisa Marguerit, Agnès Destrac-Irvine,  Gregory Gambetta and Cornelis van Leeuwen

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

climate change, drought stress, vineyard water use models, Vitis vinifera

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

Late pruning as a tool to reduce the risk of spring frosts in a vineyard in Rioja Alavesa (DO Ca Rioja)

The increase in temperature caused by climate change produces an earlier budbreak date that affects the vineyard, which generates a greater risk of damage by spring frosts.

An analysis of wine geographical indications from the perspective of the theory of industrial organizations: what are the trade off?

From Porto and then through Bordeaux, Champagne and Bourgogne, wine geographical indications (gi) were the driving models for this form of protection of distinctive signs for collective use. Many studies present the benefits of recognizing a gi for a given region, the challenges of its implementation, as well as the possibilities of promoting territorial development.

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA.