terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Abstract

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Philippe Pieri1, Laure de Rességuier1, Nathalie Ollat1, Christel Renaud1, Cécile Thibon2, Céline Cholet2, David Lecourieux1, Sabine Guillaumie1 and Ghislaine Hilbert1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2UR Œnologie, Univ. Bordeaux, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

climate change, solar radiation, vineyard, network, anthocyanins

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Efficacy of tannins of different botanical origin as partial or total substitute of SO2 to preserve a Cortese white wine during storage in cellar

While SO2 is one of the oldest and widest additive used in enology for its well-known antioxidant, anti-laccase and antimicrobial properties, it can cause health problems in some individuals.

A worldwide perspective on viticultural zoning

Cet article répertorie les intérêts et problèmes du zonage viticole dans une perspective mondiale. Le zonage est un besoin pour chacun des vignobles mondiaux où il correspond à des applications, définitions et approches variées. Les objectifs du zonage changent de concert avec les besoins du marché mondial du vin, qui ne cesse de croître.

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.