terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Abstract

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Philippe Pieri1, Laure de Rességuier1, Nathalie Ollat1, Christel Renaud1, Cécile Thibon2, Céline Cholet2, David Lecourieux1, Sabine Guillaumie1 and Ghislaine Hilbert1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2UR Œnologie, Univ. Bordeaux, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

climate change, solar radiation, vineyard, network, anthocyanins

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Soil survey and chemical parameters evaluation in viticultural zoning

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Red wine astringency: correlations between chemical and sensory features

Astringency is a crucial sensory attribute typically described as the drying and/or puckering sensation occurring after the consumption of tannin-rich foods and beverages. In this study, thirty-seven red wines from different varieties, origins and styles were evaluated, analyzing both chemical and sensory features. Principal Component Analysis was used for dimensionality-reduction and for correlating selected chemical parameters against astringency. The results showed that tannin content was the most important chemical parameter influencing overall astringency but more clearly the dryness sub-quality, followed by pH, titratable acidity and alcohol content.